Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation

Science in China Series B: Chemistry - Tập 57 Số 1 - Trang 178-183 - 2014
Xiangquan Deng1, Xingrui Liu1, Hui‐Juan Yan1, Dong Wang1, Wan Li1
1Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167–1176

Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593–4607

Peled E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems-The solid electrolyte interphase model. J Electrochem Soc, 1979, 126: 2047–2051

Verma P, Maire P, Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 2010, 55: 6332–6341

Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104: 4303–4417

Bhattacharya S, Alpas AT. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells. Carbon, 2012, 50: 5359–5371

Wang F, Graetz J, Moreno MS, Ma C, Wu L, Volkov V, Zhu Y. Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano, 2011, 5: 1190–1197

Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C, 2013, 117: 1257–1267

Eshkenazi V, Peled E, Burstein L, Golodnitsky D. XPS analysis of the sei formed on carbonaceous materials. Solid State Ion, 2004, 170: 83–91

Wagner MR, Albering JH, Moeller KC, Besenhard JO, Winter M. Xrd evidence for the electrochemical formation of in pc-based electrolytes. Electrochem Commun, 2005, 7: 947–952

Chattopadhyay S, Lipson AL, Karmel HJ, Emery JD, Fister TT, Fenter PA, Hersam MC, Bedzyk MJ. In situ X-ray study of the solid electrolyte interphase (sei) formation on graphene as a model Li-ion battery anode. Chem Mater, 2012, 24: 3038–3043

Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D. Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J Power Sources, 2007, 174: 462–468

Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. A ftir and raman study of spontaneous reactions occurring at the LiNiyCo(l−y)O2 electrode/non-aqueous electrolyte interface. J Power Sources, 2001, 94: 183–188

Santner HJ, Korepp C, Winter M, Besenhard JO, Möller KC. In-situ ftir investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Anal Bioanal Chem, 2004, 379: 266–271

Schmitz R, Ansgar Müller R, Wilhelm Schmitz R, Schreiner C, Kunze M, Lex-Balducci A, Passerini S, Winter M. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J Power Sources, 2013, 233: 110–114

Li JT, Fang JC, Su H, Sun SG. Interfacial processes of lithium ion batteries by FTIR spectroscopy. Prog Chem, 2011, 23: 349–356

Inaba M, Siroma Z, Funabiki A, Ogumi Z, Abe T, Mizutani Y, Asano M. Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution. Langmuir, 1996, 12: 1535–1540

Inaba M, Siroma Z, Kawatate Y, Funabiki A, Ogumi Z. Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate. J Power Sources, 1997, 68: 221–226

Wang L, Deng X, Dai PX, Guo YG, Wang D, Wan LJ. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: An in situ ECSTM investigation. Phys Chem Chem Phys, 2012, 14: 7330–7336

Jeong SK, Inaba M, Abe T, Ogumi Z. Surface film formation on graphite negative electrode in lithium-ion batteries: AFM study in an ethylene carbonate-based solution. J Electrochem Soc, 2001, 148: A989–A993

Aurbach D, Koltypin M, Teller H. In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion. Langmuir, 2002, 18: 9000–9009

Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries. J Power Sources, 2003, 119-121: 555–560

Samorí P. Scanning Probe Microscopies Beyond Imaging. Weinheim: Wiley, 2006

Alliata D, Kotz R, Novak P, Siegenthaler H. Electrochemical spm investigation of the solid electrolyte interphase film formed on hopg electrodes. Electrochem Commun, 2000, 2: 436–440

Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim HJ. Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim Acta, 2004, 50: 247–254

Alsteens D, Dupres V, Yunus S, Latgé JP, Heinisch JJ, Dufréne YF. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir, 2012, 28: 16738–16744

Zhao L, Watanabe I, Doi T, Okada S, Yamaki J-i. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. J Power Sources, 2006, 161: 1275–1280

Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, Doi T, Abe T, Ogumi Z. In situ AFM study of surface film formation on the edge plane of hopg for lithium-ion batteries. J Phys Chem C, 2011, 115: 25484–25489

Xie XN, Chung HJ, Sow CH, Wee ATS. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater Sci Eng R, 2006, 54: 1–48

Jeong SK, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z. Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir, 2001, 17: 8281–8286

Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z. Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim Acta, 2002, 47: 1975–1982

Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of hacat keratinocytes, a peak force tapping study on living cells. J Struct Biol, 2012, 178: 1–7

Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci, 1975, 53: 314–326

Yan J, Xia BJ, Su YC, Zhou XZ, Zhang J, Zhang XG. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim Acta, 2008, 53: 7069–7078

Novák P, Joho F, Lanz M, Rykart B, Panitz JC, Alliata D, Kötz R, Haas O. The complex electrochemistry of graphite electrodes in lithiumion batteries. J Power Sources, 2001, 97-98: 39–46

Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L. Direct observation of inhomogeneous solid electrolyte interphase on mno anode with atomic force microscopy and spectroscopy. Nano Lett, 2012, 12: 2153–2157