Morphology and defect evolution in vapor-grown In2O3:Sn micro-/nanoparticles

Materials Science in Semiconductor Processing - Tập 40 - Trang 943-953 - 2015
Jesús Alberto Ramos Ramón1, Diego León Sánchez2, Manuel Herrera Zaldívar3, Umapada Pal1
1Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla 72570, Mexico
2Facultad de Ciencias de la Electrónica, Universidad Autónoma de Puebla, 18 Sur y Av. San Claudio, Edif. 109, Puebla, Pue. 72570, Mexico
3Centro de Nanociencia y Nanotecnología, Universidad Nacional Autónoma de México, km 107 Carretera Tijuana-Ensenada, Ensenada, B.C. 22800, Mexico

Tài liệu tham khảo

Li, 2006, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis, Langmuir, 22, 9380, 10.1021/la061844k Takeuchi, 1991, Gas-sensitive properties of ultrafine In2O3 particle layers prepared by gas evaporation technique, Appl. Surf. Sci., 48, 526, 10.1016/0169-4332(91)90385-W Liang, 2001, Catalytic growth of semiconducting In2O3 nanofibers, Adv. Mater., 13, 1330, 10.1002/1521-4095(200109)13:17<1330::AID-ADMA1330>3.0.CO;2-6 Granqvist, 1993, Transparent conductive electrodes for electrochromic devices: a review, Appl. Phys. A: Solids Surf., 57, 19, 10.1007/BF00331211 Hamberg, 1984, Optical properties of transparent and heat‐reflecting indium tin oxide films: the role of ionized impurity scattering, Appl. Phys. Lett., 44, 721, 10.1063/1.94896 Reddy, 2009, Nano indium oxide as a recyclable catalyst for C–S cross-coupling of thiols with aryl halides under ligand free conditions, Org. Lett., 11, 1697, 10.1021/ol900009a Lin, 2013, First‐principle insights into the catalytic role of indium oxide in methanol steam reforming, Chin. J. Catal., 34, 1855, 10.1016/S1872-2067(12)60662-7 Li, 2003, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater., 15, 143, 10.1002/adma.200390029 Bielz, 2011, Water–gas shift and formaldehyde reforming activity determined by defect chemistry of polycrystalline In2O3, J. Phys. Chem. C, 115, 6622, 10.1021/jp111739m Kumar, 2012, Tunable growth of indium oxide from nanoflute to metal-filled nanotubes, J. Phys. Chem. C, 116, 5450, 10.1021/jp211658a Mryasov, 2001, Electronic band structure of indium tin oxide and criteria for transparent conducting behavior, Phys. Rev. B, 64, 233111-1, 10.1103/PhysRevB.64.233111 Hsin, 2006, Modulation of photoemission spectra of In2O3 nanowires by the variation in Zn doping level, Appl. Phys. Lett., 88, 063111-1, 10.1063/1.2172219 Phillips, 1995, Zinc–indium-oxide: a high conductivity transparent conducting oxide, Appl. Phys. Lett., 67, 2246, 10.1063/1.115118 Zhang, 2008, Single zinc-doped indium oxide nanowire as driving transistor for organic light-emitting diode, Appl. Phys. Lett., 92, 153312-1 Wu, 1997, Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Appl. Phys. Lett., 70, 1348, 10.1063/1.118575 Pramod, 2013, Sn-Doped In2O3 nanocrystalline thin films deposited by spray pyrolysis: microstructural, optical, electrical, and formaldehyde-sensing characteristics, J. Therm. Spray Technol., 22, 1035, 10.1007/s11666-013-9933-8 El Hichou, 2004, Effect of substrate temperature on electrical, structural, optical and cathodoluminescent properties of In2O3–Sn thin films prepared by spray pyrolysis, Thin Solid Films, 458, 263, 10.1016/j.tsf.2003.12.067 Comini, 2002, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81, 1869, 10.1063/1.1504867 Jia, 2003, Efficient field emission from single crystalline indium oxide pyramids, Appl. Phys. Lett., 82, 4146, 10.1063/1.1582354 Du, 2007, Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors, Adv. Mater., 19, 1641, 10.1002/adma.200602128 Chong, 2013, Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment, Nanoscale Res. Lett., 8, 428, 10.1186/1556-276X-8-428 Korotcenkov, 2007, Cathodoluminescence emission study of nanocrystalline indium oxide films deposited by spray pyrolysis, Thin Solid Films, 515, 8065, 10.1016/j.tsf.2007.03.186 Wang, 2008, Phase stabilization and phonon properties of single crystalline rhombohedral indium oxide, Cryst. Growth Des., 8, 1257, 10.1021/cg700910n Chun, 2004, Single-crystalline gallium-doped indium oxide nanowires, Appl. Phys. Lett., 85, 461, 10.1063/1.1771816 Zhu, 2008, Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3, Cryst. Growth Des., 8, 950, 10.1021/cg700850e Ba, 2006, Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration, Chem. Mater., 18, 2848, 10.1021/cm060548q Yin, 2009, In(OH)3 and In2O3 micro/nanostructures: controllable NaOAc-assisted microemulsion synthesis and raman properties, J. Phys. Chem. C, 113, 19493, 10.1021/jp906328z Zheng, 2001, Ordered indium-oxide nanowire arrays and their photoluminescence properties, Appl. Phys. Lett., 79, 839, 10.1063/1.1389071 Mazzera, 2007, Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments, Nanotechnology, 18, 355707, 10.1088/0957-4484/18/35/355707 Wu, 2014, Effects of Sn doping on the morphology, structure, and electrical property of In2O3 nanofiber networks, Appl. Phys. A, 117, 781, 10.1007/s00339-014-8639-1 Guha, 2004, Direct synthesis of single crystalline In2O3 nanopyramids and nanocolumns and their photoluminescence properties, Appl. Phys. Lett., 85, 3851, 10.1063/1.1808886 Hao, 2005, Controlled synthesis of In2O3 octahedrons and nanowires, Cryst. Growth Des., 5, 1617, 10.1021/cg050103z Reindl, 2009, The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films, Thin Solid Films, 517, 1624, 10.1016/j.tsf.2008.09.071 Jiang, 2013, Thermodynamic understanding of phase transitions of In2O3 nanocrystals, Chem. Phys. Lett., 563, 76, 10.1016/j.cplett.2013.01.071 Wang, 2000, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153, 10.1021/jp993593c Herring, 1951, Some theorems on the free energies of crystal surfaces, Phys. Rev., 82, 87, 10.1103/PhysRev.82.87 Honig, 1957, Vapor pressure data for the more common elements, RCA Rev., 18, 195 Gali, 2012, Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires, Semicond. Sci. Technol., 27, 015015-1, 10.1088/0268-1242/27/1/015015 Berengue, 2010, Structural characterization of indium oxide nanostructures: a Raman analysis, J. Phys. D: Appl. Phys., 43, 045401-1, 10.1088/0022-3727/43/4/045401 Xu, 2011, Structural, electronic and vibrational properties of indium oxide clusters, Chin. Phys. B, 20, 063101-1, 10.1088/1674-1056/20/6/063101 White, 1972, Vibrational spectra of oxides with the C-type rare earth oxide structure, Spectrochim. Acta A, 28, 501, 10.1016/0584-8539(72)80237-X Kim, 2007, Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for Li ion battery electrodes, Nano Lett., 7, 3041, 10.1021/nl0715037 Singhal, 2009, Colloidal Fe-Doped indium oxide nanoparticles: facile synthesis, structural, and magnetic properties, J. Phys. Chem. C, 113, 3600, 10.1021/jp8097846 Gao, 2011, UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires, Nanotechnology, 22, 195706-1, 10.1088/0957-4484/22/19/195706 Li, 2004, Multilevel memory based on molecular devices, Appl. Phys. Lett., 84, 1949, 10.1063/1.1667615 Quaas, 1998, Structural studies of ITO thin films with the Rietveld method, Thin Solid Films, 332, 277, 10.1016/S0040-6090(98)01064-5 Gu, 2004, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method, J. Phys. Chem. B, 108, 8119, 10.1021/jp036741e Maensiri, 2006, Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone), J. Cryst. Growth, 289, 102, 10.1016/j.jcrysgro.2005.10.145 Burstein, 1954, Anomalous optical absorption limit in InSb, Phys. Rev., 93, 632, 10.1103/PhysRev.93.632 Moss, 1954, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. B, 67, 775, 10.1088/0370-1301/67/10/306 Kim, 1999, Electrical, optical, and structural properties of indium–tin-oxide thin films for organic light-emitting devices, J. Appl. Phys., 86, 6451, 10.1063/1.371708 Herrera, 2014, Growth and characterization of Mn-doped In2O3 nanowires and terraced microstructures, Acta Mater., 75, 51, 10.1016/j.actamat.2014.04.069 Ten, 2014, Defect induced ferromagnetism in undoped In2O3 nanowires, Mater. Res. Bull., 60, 690, 10.1016/j.materresbull.2014.09.043 Gao, 2006, Catalytic growth of In2O3 nanobelts by vapor transport, J. Cryst. Growth, 290, 660, 10.1016/j.jcrysgro.2006.01.046 Kumar, 2008, On the origin of photoluminescence in indium oxide octahedron structures, Appl. Phys. Lett., 92, 171907-1, 10.1063/1.2910501 Liang, 2013, Self-catalytic crystal growth, formation mechanism, and optical properties of indium tin oxide nanostructures, Nanoscale Res. Lett., 8, 358, 10.1186/1556-276X-8-358 Kuo, 2014, Synthesis of transparent metallic Sn-doped In2O3 nanowires: effects of doping concentration on photoelectric properties, Phys. Status Solidi A, 211, 488, 10.1002/pssa.201300113 Herrera, 2013, Growth and characterization of Mn doped SnO2 nanowires, nanobelts, and microplates, J. Phys. Chem. C, 117, 8997, 10.1021/jp4007894 Kim, 2011, Fabrication of reliable semiconductor nanowires by controlling crystalline structure, Nanotechnology, 22, 305704-1, 10.1088/0957-4484/22/30/305704