Morphological transformation of rod-like to pebbles-like CoMoO4 microstructures for energy storage devices
Tài liệu tham khảo
Prasad, 2020, Electrochemical performance of 2D-hierarchical sheet-like ZnCo2O4 microstructures for supercapacitor applications, Crystals, 10, 1, 10.3390/cryst10070566
Xu, 2014, CoMoO4·0.9H2O nanorods grown on reduced graphene oxide as advanced electrochemical pseudocapacitor materials, RSC Adv., 4, 34307, 10.1039/C4RA04827J
Kumar, 2021, Prussian blue analogue Co3(Co(CN)6)2 cuboids as an electrode material for high-performance supercapacitor, J. Power Sources, 513
Aadil, 2021, Fabrication of rationally designed CNTs supported binary nanohybrid with multiple approaches to boost electrochemical performance, J. Electroanal. Chem., 884, 10.1016/j.jelechem.2021.115070
Reddy, 2020, Enhanced supercapacitive performance of higher-ordered 3D-hierarchical structures of hydrothermally obtained ZnCo2O4 for energy storage devices, Nanomaterials, 10, 1
Mallem, 2021, Potato chip-like 0D interconnected ZnCo2O4 nanoparticles for high-performance supercapacitors, Crystals, 11, 1
Aadil, 2021, Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities, Electrochim. Acta., 383, 10.1016/j.electacta.2021.138332
Aadil, 2016, Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices, J. Alloys Compd., 689, 648, 10.1016/j.jallcom.2016.08.029
Aadil, 2020, Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications, J. Alloys Compd., 844, 10.1016/j.jallcom.2020.156062
Candler, 2015, New insight into higherature driven morphology reliant CoMoO4 flexible supercapacitors, New J. Chem., 39, 6108, 10.1039/C5NJ00446B
Wu, 2019, Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor, J. Alloys Compd., 793, 418, 10.1016/j.jallcom.2019.04.189
Qing, 2018, Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance, Chem. Eng. J., 354, 182, 10.1016/j.cej.2018.08.005
Cao, 2017, Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application, Electrochim. Acta, 225, 605, 10.1016/j.electacta.2017.01.021
Seevakan, 2018, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode, Ceram. Int., 44, 20075, 10.1016/j.ceramint.2018.07.282
Xu, 2014, Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance, J. Alloys Compd., 616, 58, 10.1016/j.jallcom.2014.07.047
Kazemi, 2016, An advanced asymmetric supercapacitor based on a binder-free electrode fabricated from ultrathin CoMoO4 nano-dandelions, RSC Adv., 6, 71156, 10.1039/C6RA05703A
Liu, 2012, Hydrothermal process for the fabrication of CoMoO4·0.9H2O nanorods with excellent electrochemical behavior, New J. Chem., 36, 1713, 10.1039/c2nj40278e
Padmanathan, 2014, Hydrothermal synthesis of carbon- and reduced graphene oxide-supported CoMoO4 nanorods for supercapacitor, Ionics (Kiel), 20, 1323, 10.1007/s11581-014-1089-0
Chen, 2015, Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode, J. Power Sources, 300, 132, 10.1016/j.jpowsour.2015.09.011
Liu, 2017, An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction, Chem. Phys. Lett., 675, 11, 10.1016/j.cplett.2017.02.074
Xie, 2018, CoMoO4 nanoplates decorated CuCo2O4 nanowires as advanced electrodes for high-performance hybrid supercapacitors, Mater. Lett., 226, 30, 10.1016/j.matlet.2018.05.017
Barmi, 2016, Role of polymeric surfactant in the synthesis of cobalt molybdate nanospheres for hybrid capacitor applications, RSC Adv., 6, 36152, 10.1039/C6RA02628A
Wang, 2019, Hydrothermal synthesis of hierarchical CoMoO4 microspheres and their lithium storage properties as anode for lithium ion batteries, Mater. Today Commun., 20
Li, 2020, Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet, Electrochim. Acta, 330, 10.1016/j.electacta.2019.135334
Wang, 2018, One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors, Ionics (Kiel), 24, 3967, 10.1007/s11581-018-2552-0
Liu, 2013, Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors, Mater. Lett., 94, 197, 10.1016/j.matlet.2012.12.057
Veerasubramani, 2016, Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte, J. Power Sources, 306, 378, 10.1016/j.jpowsour.2015.12.034
Li, 2018, Hydrothermal synthesized of CoMoO4 microspheres as excellent electrode material for supercapacitor, Nanoscale Res. Lett., 13, 1
Zhao, 2016, Enhanced energy density of a supercapacitor using 2D CoMoO4 ultrathin nanosheets and asymmetric configuration, Nanotechnology, 27, 10.1088/0957-4484/27/50/505401
Dam, 2017, Ultra-small and low crystalline CoMoO4 nanorods for electrochemical capacitors, Sustain. Energy Fuels, 1, 324, 10.1039/C6SE00025H
Liu, 2020, Construction of polypyrrole-wrapped hierarchical CoMoO4 nanotubes as a high-performance electrode for supercapacitors, Ceram. Int., 46, 10893, 10.1016/j.ceramint.2020.01.103
Priya, 2019, Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method, Vacuum, 167, 307, 10.1016/j.vacuum.2019.06.020
Hossen, 2020, Structural, electrical and magnetic properties of Ni0.5Cu0.2Cd0.3LaxFe2-xO4 nano-ferrites due to lanthanum doping in the place of trivalent iron, Phys. B Condens. Matter., 585, 10.1016/j.physb.2020.412116
Dillip, 2014, X-ray analysis and optical studies of Dy3+ doped NaSrB5O9 microstructures for white light generation, J. Alloys Compd., 615, 719, 10.1016/j.jallcom.2014.07.017
Liu, 2014, Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials, J. Mater. Chem. A., 2, 4919, 10.1039/c4ta00582a
Kianpour, 2013, Precipitation synthesis and characterization of cobalt molybdates nanostructures, Superlattices Microstruct., 58, 120, 10.1016/j.spmi.2013.01.014
Veerasubramani, 2014, Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures, Int. J. Hydrog. Energy, 39, 5186, 10.1016/j.ijhydene.2014.01.069
Rosić, 2018, Structural and photocatalytic examination of CoMoO4 nanopowders synthesized by GNP method, Mater. Res. Bull., 98, 111, 10.1016/j.materresbull.2017.10.015
Mobeen Amanulla, 2018, Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 – Co3O4 nanocomposites and its synthesis and characterization, J. Photochem. Photobiol. B Biol., 183, 233, 10.1016/j.jphotobiol.2018.04.034
Jinlong, 2016, Synthesis of Co3O4@CoMoO4 core–shell architectures nanocomposites as high-performance supercapacitor electrode, J. Electroanal. Chem., 783, 250, 10.1016/j.jelechem.2016.11.013
Zhao, 2016, Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure, Chem. Phys. Lett., 664, 23, 10.1016/j.cplett.2016.10.001
Chen, 2015, Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors, Nanoscale, 7, 15159, 10.1039/C5NR02961A
Tomboc, 2017, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor, Chem. Eng. J., 308, 202, 10.1016/j.cej.2016.09.056
Zhu, 2018, Two-dimensional porous ZnCo2O4 thin sheets assembled by 3D nanoflake array with enhanced performance for aqueous asymmetric supercapacitor, Chem. Eng. J., 336, 679, 10.1016/j.cej.2017.12.035
Jinlong, 2017, The effects of urea concentration on microstructures of ZnCo2O4 and its supercapacitor performance, Ceram. Int., 43, 6168, 10.1016/j.ceramint.2017.02.013
Han, 2019, Solvothermal preparation of zinc cobaltite mesoporous microspheres for high-performance electrochemical supercapacitors, J. Alloys Compd., 781, 425, 10.1016/j.jallcom.2018.12.079
Li, 2016, Construction of hierarchical Ni(OH)2@CoMoO4 nano flake composite for high-performance supercapacitors, Nano, 11, 1, 10.1142/S1793292016500508
Geng, 2016, Facile construction of novel CoMoO4 microplates@CoMoO4 microprisms structures for well-stable supercapacitors, Prog. Nat. Sci. Mater. Int., 26, 243, 10.1016/j.pnsc.2016.05.004
Zhang, 2016, Facile synthesis of hierarchical CoMoO4@NiMoO4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors, J. Mater. Chem. A., 4, 18578, 10.1039/C6TA06848K
Wang, 2019, Construction of layered hierarchical CoMoO4 nanostructured arrays for supercapacitors with enhanced areal capacitance, R. Soc. Open Sci., 6
Cao, 2016, Hierarchical core/shell structures of ZnO nanorod@CoMoO4 nanoplates used as a high-performance electrode for supercapacitors, RSC Adv., 6, 3020, 10.1039/C5RA21953A
Guo, 2013, Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors, J. Mater. Chem. A., 1, 7247, 10.1039/c3ta10909g
Ma, 2019, Three dimensional CoMoO4 nanosheets on Nickel foam for high performance supercapacitors, IOP Conf. Ser.: Mater. Sci. Eng., 493, 10.1088/1757-899X/493/1/012062
Yang, 2013, Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors, Electrochim. Acta, 112, 378, 10.1016/j.electacta.2013.08.056
Chen, 2019, Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors, J. Electroanal. Chem., 846, 10.1016/j.jelechem.2019.05.035
Reddy, 2020, Mechanistic investigation of defect-engineered, non-stoichiometric, and Morphology-regulated hierarchical rhombus-/spindle-/peanut-like ZnCo2O4 microstructures and their applications toward high-performance supercapacitors, Appl. Surf. Sci., 529, 10.1016/j.apsusc.2020.147123