Morphological disparity in ecologically diverse versus constrained lineages of Lake Malaŵi rock-dwelling cichlids

Hydrobiologia - Tập 832 - Trang 153-174 - 2018
R. Craig Albertson1, Michael J. Pauers2,3,4
1Department of Biology, University of Massachusetts, Amherst, USA
2Section of Vertebrate Zoology, Milwaukee Public Museum, Milwaukee, USA
3Department of Biological Sciences, University of Wisconsin-Waukesha, Waukesha, USA
4School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA

Tóm tắt

Lake Malaŵi cichlids have evolved rapidly, extensively, and in some cases iteratively to fill an array of ecological niches; however, neither species richness nor trophic diversity is distributed equally across lineages. In the context of evolutionary theory, such differences offer predictions about the magnitudes and patterns of morphological variation within lineages. In this paper, we use geometric morphometrics in three prevalent rock-dwelling genera to address questions related to morphological diversity, disparity, integration, and modularity. In particular, we focus on comparisons between the highly specialized and species-poor genus, Labeotropheus (Ahl in Sitzungsberichte der Berlinische Gesellschaft Naturforschender Freunde zu Berlin 1926:51–62, 1927), and the more ecologically diverse and species-rich genus, Tropheops (Trewavas in Revue Française d’Aquariologie Herpétologie 10:97–106, 1984), as well as between species with lake-wide versus more limited distributions. We find that Labeotropheus exhibits comparable levels of morphological disparity to Tropheops, which suggests that a specialized foraging mode has not constrained cranial variability in this genus. We also find that species with a lake-wide distribution exhibit levels of disparity three times greater than that in a species with a limited distribution. Finally, we show that magnitudes of integration and patterns of modularity are lineage specific, and do not directly correspond to ecology. In sum, these data provide insights into the complex relationship between ecology, morphological variability, and evolvability.

Tài liệu tham khảo

Adams, D. C., & P. Peres-Neto, 2016. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods in Ecology and Evolution 7(5): 565–572. Adams, D., M. Collyer, A. Kaliontzopoulou & E. Sherratt, 2017. Geometric Morphometric Analyses of 2D/3D Landmark Data. http://geomorphr.github.io/geomorph/. Ahl, E., 1927. Einige neue Fische der Familie Cichlidae aus dem Nyassa-see. Sitzungsberichte der Berlinische Gesellschaft Naturforschender Freunde zu Berlin 1926: 51–62. Albertson, R. C., 2008. Morphological divergence predicts habitat partitioning in a Lake Malawi cichlid species complex. Copeia 2008: 689–698. Albertson, R. C., J. T. Streelman & T. D. Kocher, 2003. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences (USA) 100: 5252–5257. Barlow, G. W., 2000. The Cichlid Fishes: Nature’s Grand Experiment in Evolution. Perseus Publishing, Cambridge, MA. Belyaev, D. K., 1979. Destabilizing selection as a factor in domestication. Journal of Heredity 70: 301–308. Björnerfeldt, S., M. T. Webster & C. Vilà, 2006. Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Research 16: 990–994. Bookstein, F. L. 2015. Integration, disintegration, and self-similarity: Characterizing the scales of shape variation in landmark data. Evolutionary Biology 42(4): 395–426. Bookstein, F. L., P. Gunz, P. Mitterœcker, H. Prossinger, K. Schæfer & H. Seidler, 2003. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution 44(2): 167–187 Boulenger, G. A., 1899. A revision of the African and Syrian fishes of the family Cichlidae. Part II. Proceedings of the Zoological Society of London 1899: 98–143. Boulenger, G. A., 1901. Diagnoses of new fishes discovered by Mr. J. E. S. Moore in lakes Tanganyika and Kivu. II. Cichlidae, Mastacembelidae. Annals and Magazine of Natural History 7: 1–6. Collier, J., 1998. Information increase in biological systems: how does adaptation fit? In van der Vijver, G., S. N. Salthe & M. Delpos (eds.), Evolutionary Systems. Kluwer, Dordrecht: 129–140. Conith, M. R., Y. Hu, A. J. Conith, M. A. Maginnis, J. F. Webb & R. C. Albertson, 2018. Genetic and developmental origins of a novel foraging adaptation in a Lake Malawi cichlid genus. Proceedings of the National Academy of Sciences (USA) 115: 7063–7068. Emery, M., M. M. S. Willis, Y. Hao, K. Barry, K. Oakgrove, Y. Peng, J. Schmutz, E. Lyons, J. C. Pires, P. P. Edger & G. C. Conant, 2018. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. Public Library of Science Genetics 14: e1007267. Foote, M., 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19: 403–419. Fryer, G., 1956. A new species of Labeotropheus from Lake Nyasa, with a redescription of Labeotropheus fuelleborni Ahl and some notes on the genus Labeotropheus (Pisces: Cichlidae). Revue de Zoologie et de Botanique Africaines 54: 280–289. Fryer, G., 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting Cichlidae. Proceedings of the Zoological Society of London 132: 153–281. Fryer, G. & T. D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. Oliver and Boyd, London. Genner, M. J., G. F. Turner & S. J. Hawkins, 1999. Foraging of rocky habitat cichlid fishes in Lake Malawi: coexistence through niche partitioning? Oecologia. 121(2): 283–292. Helfman, G. S., B. B. Collette, D. E. Facey & B. W. Bowen, 2009. The Diversity of Fishes: Biology, Ecology, and Evolution. Wiley, Hoboken, NJ. Hu, Y. & R. C. Albertson, 2016. Developmental biases on morphological evolvability. In Kliman, R. M. (ed.), Encyclopedia of Evolutionary Biology, Vol. 1. Academic Press, Oxford: 399–403. Kayal, E., B. Bentlage, M. S. Pankey, A. H. Odera, M. Medina, D. C. Plachetzki, A. G. Collins & J. F. Ryan, 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology 18: 18 pp. Klingenberg, C. P., 2008. Morphological integration and developmental modularity. Annual Review of Ecology Evolution and Systematics 39: 115–132. Konings, A. F., 2016. Malawi Cichlids in Their Natural Habitat, 5th ed. Cichlid Press, El Paso. Lahti, D. C., N. A. Johnson, B. C. Ajie, S. P. Otto, A. P. Hendry, D. T. Blumstein, R. G. Coss, K. Donohue & S. A. Foster, 2009. Relaxed selection in the wild. Trends in Ecology and Evolution 24: 487–496. Maxwell, E. E. & L. A. Wilson, 2013. Regionalization of the axial skeleton in the ‘ambush predator’ guild–are there developmental rules underlying body shape evolution in ray-finned fishes? BMC Evolutionary Biology 13: 17 pp. Meyer, M. K. & W. Förster, 1984. Un nouveau Pseudotropheus du lac Malawi avec des remarques sur le complexe Pseudotropheus-Melanochromis (Pisces, Perciformes, Cichlidae). Revue Française d’Aquariologie Herpétologie 10: 107–112. Mou, C., F. Pitel, D. Gourichon, F. Vignoles, A. Tzika, P. Tato, L. Yu, D. W. Burt, B. Bed'Hom, M. Tixier-Boichard, K. J. Painter, D. J. Headon & G. Barsh, 2011. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLoS Biology 9(3): e1001028 Oliver, M. K. & M. E. Arnegard, 2010. A new genus for Melanochromis labrosus, a problematic Lake Malawi cichlid with hypertrophied lips (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters 21: 209–232. Outomuro, D. & F. Johansson, 2017. A potential pitfall in studies of biological shape: does size matter? Journal of Animal Ecology. 86(6): 1447–1457. Parsons, K. J., W. J. Cooper & R. C. Albertson, 2011. Modularity of the oral jaws is linked to repeated changes in the craniofacial shape of African cichlids. International Journal of Evolutionary Biology. https://doi.org/10.4061/2011/641501. Parsons, K. J., M. Concannon, D. Navon, J. Wang, I. Ea, K. Groveas, C. Campbell & R. C. Albertson, 2016. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes. Molecular Ecology 25: 612–623. Parsons, K. J., Y. H. Son, A. Crespel, D. Thambithurai, S. Killen, M. P. Harris & R. C. Albertson, 2018. Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability. Proceedings of the Royal Society B: Biological Sciences 285: 1877. Pauers, M. J., 2010. Species concepts, speciation, and taxonomic change in the Lake Malawi mbuna, with special reference to the genus Labeotropheus Ahl 1927 (Perciformes: Cichlidae). Reviews in Fish Biology and Fisheries 20: 187–202. Pauers, M. J., 2016. Two new and remarkably similarly colored species of Labeotropheus (Perciformes: Cichlidae) from Lake Malawi, Africa. Copeia 104: 628–638. Pauers, M. J., 2017. A new species of Labeotropheus (Perciformes: Cichlidae) from southern Lake Malawi, Africa. Copeia 105: 399–414. Pauers, M. J. & S. A. McMillan, 2015. Geometric morphometrics reveals surprising diversity in the Lake Malawi cichlid genus Labeotropheus. Hydrobiologia 748: 145–160. Raina, J.-B., L. Eme, F. J. Pollock, A. Spang, J. M. Archibald & T. A. Williams, 2018. Symbiosis in the microbial world: from ecology to genome evolution. Biology Open 7: bio032524. Ribbink, A. J., A. C. Marsh, B. A. Marsh & B. J. Sharp, 1983a. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology 18: 149–310. Ribbink, A. J., B. A. Marsh, A. C. Marsh, A. C. Ribbink & B. J. Sharp, 1983b. The zoogeography, ecology and taxonomy of the genus Labeotropheus Ahl, 1927, of Lake Malawi (Pisces:Cichlidae). Zoological Journal of the Linnean Society 79: 223–243. Rohlf, F. J., 2015. The tps series of software. Histrix 26(1): 9–12. Rohlf, F. J. & D. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology 39: 40–59. Rupp, M. F. & C. D. Hulsey, 2014. Influence of substrate orientation on feeding kinematics and performance of algae grazing Lake Malawi cichlid fishes. Journal of Experimental Biology 217: 3057–3066. Trewavas, E., 1984. Nouvel examen des genres et sous-genres du complexe Pseudotropheus-Melanochromis du lac Malawi (Pisces, Perciformes, Cichlidae). Revue Française d’Aquariologie Herpétologie 10: 97–106. Webber, Q. M. R. & E. Vander Wal, 2017. An evolutionary framework outlining the integration of individual social and spatial ecology. Journal of Animal Ecology 87: 113–127. Won, Y.-J., A. Sivasundar, Y. Wang & J. Hey, 2005. On the origin of Lake Malawi cichlid species: a population genetic analysis of divergence. Proceedings of the National Academy of Sciences 102: 6581–6586. Sabaj-Perez, M. H., 2016. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 6.5 (16 August 2016). Electronically accessible at http://www.asih.org/ American Society of Ichthyologists and Herpetologists, Washington, DC. Schluter, D., 2001. Ecology and the origin of species. Trends in Ecology & Evolution 16(7): 372–380.