Morphologic assessment of oxidative damage: A review

Terry D. Oberley1, Theodor A. Zainal2
1Pathology and Laboratory Medicine Service, Veterans Administration Hospital, Madison, WI
2Department of Nutritional Sciences, University of Wisconsin, Madison

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sohal, R.S., and Weindruch, R.: Oxidative stress, caloric restriction, and aging. Science, 273: 59–63, 1996.

Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism is mammalian organs. Physiol. Rev., 59: 527–605, 1979.

Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., and Lal, H.: Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev., 74: 121–133, 1994.

Pansarasa, O., Bertorelli, L., Vecchiet, J., Felzani, G., and Marzatico, F.: Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic. Biol. Med., 27: 617–622, 1999.

Mecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M.C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M.F.: Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic. Biol. Med., 26: 303–308, 1999.

Pugh, T.D., Oberley, T.D., and Weindruch, R.: Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases life span and lifetime cancer incidence in mice. Cancer Res., 59: 1642–1648, 1999.

Yan, T., Jiang, X., Zhang, H.J., Li, S., and Oberley, L.W.: Use of commercial antibodies for detection of primary antioxidant enzymes. Free Radic. Biol. Med., 25: 688–693, 1998.

Uchida, K., Itakura, K., Kawakishi, S., Hiai, H., Toyokuni, S., and Stadtman, E.R.: Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch. Biochem. Biophys., 324: 241–248, 1995.

Uchida, K., Szweda, L.I., Chae, H-Z., and Stadtman, E.R.: Immunochemical detection of 4-hydroxy-2-nonenal protein adducts in oxidized hepatocytes. Proc. Natl. Acad. Sci. USA, 90: 8742–9846, 1993.

Toyokuni, S., Miyake, N., Hiai, H., Hagiwara, M., Kawakishi, S., Osawa, T., and Uchida, K.: The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett., 359: 189–191, 1995.

Toyokuni, S., Tanaka, T., Hattori, Y., Nishiyama, Y., Yoshida, A., Uchida, K., Ochi, H., and Osawa, T.: Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilo-triacetate-induced renal carcinogenesis model. Lab. Invest., 76: 365–374, 1997.

MacMillen-Crow, L.A., Crow, J.P., Kerby, J.D., Beckman, J.S., and Thompson, J.A.: Nitration and inactivation of manganese superoxide dismutase in chronic rejection of renal allograft. Proc. Natl. Acad. Sci. USA, 93: 11853–11858, 1996.

Smith, M.A., Sayre, L.M., Anderson, V.E., Harris, P.L.R., Beal, M.F., Kowall, N., and Perry, G.: Cytochemical determination of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem., 46: 731–735, 1998.

Toyokuni, S.: Reactive oxygen species-induced molecular damage and its application in pathology. Path. Int., 49: 401–410, 1999.

Kondo, S., Toyokuni, S., Iwasa, Y., Tanake, T., Onodera, H., Hiai, H., and Imamura M.: Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic. Biol. Med., 27: 401–410, 1999.

Coursin, D.B., Cihla, H.P., Oberley, T.D., and Oberley, L.W.: Immunolocalization of antioxidant enzymes and isozymes of glutathione S-transferase in normal rat lung. Am. J. Physiol., 263: L679–L691, 1992.

Weisiger, R.A., and Fridovich, I.: Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial location. J. Biol. Chem., 248: 4793–4796, 1973.

McCord, J.M., and Fridovich, I.: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055, 1969.

Marklund, S.L., Holme, E., and Hellner, L.: Superoxide dismutase in extracellular fluids. Clin. Chim. Acta, 126: 41–51, 1982.

Peeters-Joris, C., Vandervoorde, A.M., and Bandhuin, P.: Subcellular localization of superoxide dismutase in rat liver. Biochem. J., 150: 31–39, 1975.

Muse, K.E., Oberley, T.D., Sempf, J.M., and Oberley, L.W.: Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem. J., 26: 734–753, 1994.

Vertechy, M., Cooper, M.B., Ghirardi, O., and Ramacci, M.T.: Antioxidant enzyme activities in heart and skeletal muscle of rats of different ages. Exp. Gerontol., 24:211–218, 1989.

Ji L.L., Dillon, D., and Wu, E.: Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol., 258: R918–R923, 1990.

Oh-Ishi, S., Kisaki, T., Yamashita, H., Nagata, N., Suzuki, K., Taniguchi, N., and Ohno, H.: Alterations of superoxide dismutase iso-enzyme activity, content, and mRNA expression with aging in skeletal muscle. Mech. Ageing Dev., 84: 65–76, 1995.

Oberley, T.D., Oberley, L.W., Slattery, A.F., Lauchner, L.J., and Elwell, J.H.: Immunohistochemical localization of antioxidant enzymes in adult Syrian hamster tissues and during kidney development. Am. J. Path., 137: 199–214, 1990.

Oberley, T.D., Oberley, L.W., Slattery, A.F., and Elwell, J.H.: Immunohistochemical localization of glutathione S-transferase and glutathione peroxidase in adult hamster tissues and during kidney development. Am. J. Path., 139: 355–369, 1991.

Oberley, T.D., Friedman, A.L., Moser, R., and Siegel, F.L.: Effects of lead administration on developing rat kidney. II. Functional, morphologic, and immunohistochemical studies. Toxicol. and Applied Pharmacol., 131: 94–107, 1995.

Daggett, D.A., Oberley, T.D., Nelson, S.A., Wright, L.S., Kornguth, S.E., and Siegel, F.L.: Effects of lead on rat kidney and liver: GST expression and oxidative stress. Toxicology, 128: 191–206, 1998.

Arai, M., Imai, H., Koumura, T., Yoshida, M., Emoto, K., Umeda, M., Chiba, N., and Nakagawa, Y.: Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem., 274: 4924–4933, 1999.

Bulitta, C., Ganea, C., Fahimi, H.D., and Volkl, A.: Cytoplasmic and peroxisomal catalases of the guinea pig liver: evidence for two distinct proteins. Biochim. et Biophys. Acta, 1293: 55–62, 1996.

Swaroop, M., Bian, J., Aviram, M., Duan, H., Bisgaier, C.L., Loo, J.A., and Sun, Y.: Expression, purification, and biochemical characterization of SAG, a ring finger redox-sensitive protein. Free Radic. Biol. Med., 27: 193–202, 1999.

Oberley, T.D., and Oberley, L.W.: Antioxidant enzyme levels in cancer. Histol. Histopath., 12: 525–535, 1997.

Tsai, L., Szweda, P.A., Vinogradova, O., and Szweda, L.I.: Structural characterization and immunochemical detection of a fluorophore derived from 4-hydroxy-2-nonenal and lysine. Proc. Natl. Acad. Sci. USA, 95: 7975–7980, 1998.

Zainal, T.A., Weindruch, R., Szweda, L.I., and Oberley, T.D.: Localization of 4-hydroxy-2-nonenal-modified proteins in kidney following iron overload. Free Radic. Biol. Med., 26:1181–1193, 1999.

Brennick, J.B., O’Connell, J.V., Dickerson, G.R., and Young, R.H.: Lipofuscin accumulation (so-called “melanosis”) of the prostate. Am. J. Surg. Path., 18: 446–454, 1994.

Amin, M.B., and Bostwick, D.B.: Pigment in prostatic epithelium and adenocarcinoma: a potential source of diagnostic confusion with seminal vesicle epithelium. Modern Pathol., 9: 791–795, 1996.

Oberley, T.D., Toyokuni, S., and Szweda, L.I.: Localization of hydroxynonenal protein adducts in normal human kidney and selected human kidney cancers. Free Radic. Biol. Med., 27: 693–703, 1999.

Ahn, B., Han, B.S., Kim, D.J., and Oshima, H.: Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis, 20: 1337–1344, 1999.

Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R., and Mizuno, Y.: Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 93: 2696–2701, 1996.

Montine, K.S., Olson, S.J., Amarnath, V., Whetsell, W. Jr., Graham, D.J., and Montine, T.J.: Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J. Path., 150: 437–443, 1997.

Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H-X., Chen, W., Zhai, P., Sufit, R.L., and Siddique, T.: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264: 1772–1775, 1995.

Flood, D.G., Reaume, A.G., Gruner, J.A., Hoffman, E.K., Hirsch, J.D., Lin, Y-G., Dorfman, K.S., and Scott, R.W.: Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Path., 155: 663–672, 1999.

Anson, R.M., Senturker, S., Dizdaroglu, M., and Bohr, V.: Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radic. Biol. Med., 27: 456–452, 1999.

Ando, Y., Nyhlin, N., Suhr, O., Holmgren, G., Uchida, K., Sahly, M.E., Yamashita, T., Terasaki, H., Makamura, M., Uchino, M., and Ando, M.: Oxidative stress is found in amyloid deposits in systemic amyloidosis. Biochem. Biophys. Res. Comm., 232: 497–502, 1997.

Ohhira, M., Ohtake, T., Matsumoto, A., Saito, H., Ikuta, K., Fujimoto, Y., Ono, M., Toyokuni, S., Kohgo, Y.: Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver disease. Alcohol Clin. Exp. Res., 22: S145–S149, 1997.

Kageyama, F., Kobayashi, Y., Koide, S.: Enhanced lipid peroxidation in chronic hepatitis C. Jpn. Pharmacol. Ther., 26: S405–S408, 1998.

Lee, C-K., Klopp, R.G., Weindruch, R., and Prolla, T.A.: Gene expression profile of aging and its retardation by caloric restriction. Science, 285: 1390–1393, 1999.

Bates, P.C., and Millward, D.J. Myofibrillar protein turnover. Biochem. J., 214: 587–592, 1983.

Kerver, E.D., Vogels, I.M., Bosch, K.S., Vreeling-Sindelavarova, H., van den Munckhof, R.J.M., and Frederiks, W.M.: In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. Histochem. J., 29: 229–237, 1997.

Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., and Osawa, T.: Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potent inducer of intracellular peroxide production. J. Biol. Chem., 274: 2234–2242, 1999.

Eiserich, J.P., Estevez, A.G., Bamberg, T.V., Ye, Y.Z., Chumley, P.H., Beckman, J.S., and Freeman, B.A.: Microtubule dysfunction by posttranslational nitrotyrosination of a-tubulin: A nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA, 96: 6365–6370, 1999.

Yen, H-C., Oberley, T.D., Vichitbanda, S., Ho, Y-S., and St. Clair, D.K.: The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J. Clin. Invest., 98: 1253–1260, 1996.

Yen, H-C., Oberley, T.D., Gairola, C.G., Szweda, L.I., and St. Clair, D.K.: Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch. Biochem. Biophys., 362: 59–66, 1999.