Morphodynamics and heavy metal accumulation in an artificially built near-natural river (Inde, Germany)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahilan, S., Guan, M., Sleigh, A., Wright, N., & Chang, H. (2018). The influence of floodplain restoration on flow and sediment dynamics in an urban river. Journal of Flood Risk Management, 11(S2), S986–S1001. https://doi.org/10.1111/jfr3.12251
Archer, E., Bisson, P., Bliesner, K., Bohner, R., Buskirk, B., Cochran, B., et al. (2017). Middle Fork John Day River Intensively Monitored Watershed Final Summary Report.
Axtmann, E. V., & Luoma, S. N. (1991). Large-scale distribution of metal contamination in the fine-grained sediments of the Clark Fork River, Montana, U.S.A. Applied Geochemistry, 6(1), 75–88. https://doi.org/10.1016/0883-2927(91)90064-V
Berg, H., Lieser, U., & Meurer, T. (2004). Problemlösungen bei der Renaturierung von Gewässern am Beispiel der Umgestaltung der Inde. Wasser Und Abfall, 6, 38–42. https://doi.org/10.1007/bf03247281
Berg, H., Lieser, U., Meurer, T., & Haese, U. (2008). Gewässerrenaturierung trotz konfliktreicher Ausgangssituation: Die Umgestaltung der Inde bei Eschweiler/Weisweiler. Wasser Und Abfall, 10, 39–43. https://doi.org/10.1007/BF03247557
Bezirksregierung Köln. (2021). Geodatendienste Digitale Orthophotos (DOP). Retrieved August 2, 2023, from https://www.wms.nrw.de/geobasis/wms_nw_dop.%20bezreg-koeln.nrw.de/brk_internet/geobasis/webdienste/geodatendienste/index.html
BGR. (2021). Geologie 1 : 200 000 - Geologische Übersichtskarte der Bundesrepublik Deutschland 1 : 200 000 (GÜK200). Retrieved from https://www.bgr.bund.de/DE/Themen/Sammlungen-Grundlagen/GG_geol_Info/Karten/Deutschland/GUEK200/guek200_inhalt.html
Birch, G. F., Robertson, E., Taylor, S. E., & McConchie, D. M. (2000). The use of sediments to detect human impact on the fluvial system. Environmental Geology, 39(9), 1015–1028. https://doi.org/10.1007/s002549900075
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., et al. (2019). Changing climate both increases and decreases European river floods. Nature, 573(7772), 108–111. https://doi.org/10.1038/s41586-019-1495-6
Brännvall, M.-L., Bindler, R., Renberg, I., Emteryd, O., Bartnicki, J., & Billström, K. (1999). The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in Northern Europe. Environmental Science & Technology, 33(24), 4391–4395. https://doi.org/10.1021/es990279n
Brettschneider, D. J., Spring, T., Blumer, M., Welge, L., Dombrowski, A., Schulte-Oehlmann, U., et al. (2023). Much effort, little success: Causes for the low ecological efficacy of restoration measures in German surface waters. Environmental Sciences Europe, 35(1), 31. https://doi.org/10.1186/s12302-023-00736-1
Brierley, G., & Fryirs, K. (2022). Truths of the Riverscape: Moving beyond command-and-control to geomorphologically informed nature-based river management. Geoscience Letters, 9(1), 14. https://doi.org/10.1186/s40562-022-00223-0
Brookes, A. (1985). Downstream Morphological consequences of river channelization in England and Wales. The Geographical Journal, 151(1), 57–62. https://doi.org/10.2307/633279
Buchty-Lemke, M. (2018). Untersuchungen zu anthropogenen Einflüssen auf die fluviale Morphodynamik und die Verteilung erhöhter Spurenelementgehalte in kleinen Flusseinzugsgebieten: Das Beispiel der Wurm. Universitätsbibliothek der RWTH Aachen.
Byrne, P., Wood, P. J., & Reid, I. (2012). The impairment of river systems by metal mine contamination: A review including remediation options. Critical Reviews in Environmental Science and Technology, 42(19), 2017–2077. https://doi.org/10.1080/10643389.2011.574103
Ciszewski, D. (2001). Flood-related changes in heavy metal concentrations within sediments of the Bial-a Przemsza River. Geomorphology, 40(3), 205–218. https://doi.org/10.1016/S0169-555X(01)00044-7
Clark, D. E., Vogels, M. F. A., Perk, M. V. D., Owens, P. N., & Petticrew, E. L. (2014). Effects of a small-scale, abandoned gold mine on the geochemistry of fine stream-bed and floodplain sediments in the Horsefly River watershed, British Columbia. Canada. Mineralogical Magazine, 78(6), 1491–1504. https://doi.org/10.1180/minmag.2014.078.6.16
Clement, A. J. H., Nováková, T., Hudson-Edwards, K. A., Fuller, I. C., Macklin, M. G., Fox, E. G., & Zapico, I. (2017). The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand. Geomorphology, 295, 159–175. https://doi.org/10.1016/j.geomorph.2017.06.011
Colica, A., Benvenuti, M., Chiarantini, L., Costagliola, P., Lattanzi, P., Rimondi, V., & Rinaldi, M. (2019). From point source to diffuse source of contaminants: The example of mercury dispersion in the Paglia River (Central Italy). CATENA, 172, 488–500. https://doi.org/10.1016/j.catena.2018.08.043
Coulthard, T. J., & Macklin, M. G. (2003). Modeling long-term contamination in river systems from historical metal mining. Geology, 31(5), 451–454. https://doi.org/10.1130/0091-7613(2003)031%3c0451:MLCIRS%3e2.0.CO;2
Dahm, V., Kupilas, B., Rolauffs, P., Hering, D., Haase, P., Kappes, H., et al. (2014). Strategien zur Optimierung von Fließgewässer-Renaturierungsmaßnahmen und ihrer Erfolgskontrolle. https://doi.org/10.13140/RG.2.1.3806.3601
Debnath, A., Singh, P. K., & Chandra Sharma, Y. (2021). Metallic contamination of global river sediments and latest developments for their remediation. Journal of Environmental Management, 298, 113378. https://doi.org/10.1016/j.jenvman.2021.113378
Dhivert, E., Grosbois, C., Courtin-Nomade, A., Bourrain, X., & Desmet, M. (2016). Dynamics of metallic contaminants at a basin scale — Spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Science of the Total Environment, 541, 1504–1515. https://doi.org/10.1016/j.scitotenv.2015.09.146
Dongmann, G., Valenta, P., & Nürnberg, H. W. (1987). Application of a simple sector dispersion model II. Modelling wet deposition of heavy metals in the Stolberg area (F.R.G.). Science of the Total Environment, 60, 229–248. https://doi.org/10.1016/0048-9697(87)90418-9
Eckmeier, E., & Gerlach, R. (2012). Characterization of Archaeological Soils and Sediments Using VIS Spectroscopy. In eTopoi. Journal for Ancient Studies (Vol. Special Volume 3, pp. 285–290). Berlin. Retrieved from http://journal.topoi.org/index.php/etopoi/article/viewFile/128/148
Esfandiary, F., & Rahimi, M. (2019). Analysis of river lateral channel movement using quantitative geomorphometric indicators: Qara-Sou River. Iran. Environmental Earth Sciences, 78(15), 469. https://doi.org/10.1007/s12665-019-8478-7
Esser, V. (2020). Untersuchungen zur fluvialen Morphodynamik und zur rezenten Schadstoffausbreitung in Flusssystemen - Beispiele aus der Grenzregion Belgien, Niederlande und Deutschland [Online]. Aachen.
Esser, V., Buchty-Lemke, M., Schulte, P., Podzun, L. S., & Lehmkuhl, F. (2020). Signatures of recent pollution profiles in comparable central European rivers—Examples from the international River Basin District Meuse. CATENA, 193, 104646. https://doi.org/10.1016/j.catena.2020.104646
Ewers, U., Turfeld, M., Freier, I., & Brockhaus, A. (1996). Blei- und Cadmiumbelastung Zähne als Indikatoren der Blei- und Cadmiumbelastung des Menschen. Umweltwissenschaften Und Schadstoff-Forschung, 8(6), 312–316. https://doi.org/10.1007/BF02945901
Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R., & Ferreira, M. T. (2020). Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. CATENA, 188, 104466. https://doi.org/10.1016/j.catena.2020.104466
Fernando, J. (2010). Effect of water quality on the dispersive characteristics of soils found in the morwell area, Victoria. Australia. Geotechnical and Geological Engineering, 28(6), 835–850. https://doi.org/10.1007/s10706-010-9345-1
Fiskal, C., Kummer, V., Scholz, H., & Steinmüller, D. (2010). Ausbau und Umverlegung des Weißen Schöps - technische und naturschutzfachliche Herausforderung. Retrieved from https://hdl.handle.net/20.500.11970/103660
Flatley, A., Rutherfurd, I. D., & Hardie, R. (2018). River channel relocation: problems and prospects. Water, 10(10), 1360. https://doi.org/10.3390/w10101360
Foulds, S. A., Brewer, P. A., Macklin, M. G., Haresign, W., Betson, R. E., & Rassner, S. M. E. (2014). Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Science of the Total Environment, 476–477, 165–180. https://doi.org/10.1016/j.scitotenv.2013.12.079
Gerwin, W., Raab, T., Birkhofer, K., Hinz, C., Letmathe, P., Leuchner, M., et al. (2023). Perspectives of lignite post-mining landscapes under changing environmental conditions: What can we learn from a comparison between the Rhenish and Lusatian region in Germany? Environmental Sciences Europe, 35(1), 36. https://doi.org/10.1186/s12302-023-00738-z
Gottschalk, N., Löser, R., & Schaffrath, M. (2011). Abschlussbericht Natürliche Hintergrundbelastung von Oberflächengewässern in Nordrhein-Westfalen mit Schwermetallen. Chemnitz.
Hahn, J., Zils, V., & Berresheim, L. (2021). Joint recording of contamination status, multi-element dynamics, and source identification on a sub-catchment scale: The example Lahn River (Germany). Science of the Total Environment, 762, 143110. https://doi.org/10.1016/j.scitotenv.2020.143110
Hardie, R., Nat, M., Hall, D., & Tilleard, J. (2020). Design of a river for a modified environment: Stream rehabilitation and the latest Morwell river diversion. In Hydro 2000: Interactive Hydrology; Proceedings (pp. 1024–1029). Australia. https://doi.org/10.3316/informit.584791098362493
Heaven, S., Ilyushchenko, M. A., Kamberov, I. M., Politikov, M. I., Tanton, T. W., Ullrich, S. M., & Yanin, E. P. (2000). Mercury in the River Nura and its floodplain, Central Kazakhstan: II. Floodplain soils and riverbank silt deposits. Science of The Total Environment, 260(1), 45–55. https://doi.org/10.1016/S0048-9697(00)00566-0
Hiersekorn, A. (1989). Waldgeschichte der Nordeifel. Höhere Forstbehörde Rheinland.
Hoffmann, T., Erkens, G., Gerlach, R., Klostermann, J., & Lang, A. (2009). Trends and controls of Holocene floodplain sedimentation in the Rhine catchment. CATENA, 77(2), 96–106. https://doi.org/10.1016/j.catena.2008.09.002
Holtz, F. (2020). Alphabet der Heimatkunde Buchstabe V. Retrieved August 2, 2023, from http://www.stolberg-abc.de/htdocs/vtxt.htm#verhuetten
Howard, A. J., Coulthard, T. J., & Knight, D. (2017). The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK. Geomorphology, 293, 37–52. https://doi.org/10.1016/j.geomorph.2017.05.009
Hudson-Edwards, K. A. (2003). Sources, mineralogy, chemistry and fate ofheavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67(2), 205–217. https://doi.org/10.1180/0026461036720095
Hupp, C. R., Pierce, A. R., & Noe, G. B. (2009). Floodplain geomorphic processes and environmental impacts of human alteration along Coastal Plain rivers, USA. Wetlands, 29(2), 413–429. https://doi.org/10.1672/08-169.1
Hurley, R. R., Rothwell, J. J., & Woodward, J. C. (2017). Metal contamination of bed sediments in the Irwell and Upper Mersey catchments, northwest England: Exploring the legacy of industry and urban growth. Journal of Soils and Sediments, 17(11), 2648–2665. https://doi.org/10.1007/s11368-017-1668-6
ISO 11277. (2002). Soil quality—Determination of particle size distribution in mineral soil material - Method by sieving and sedimentation. Geneva: International Organization for Standardization.
Jacoub, G., & Westrich, B. (2007). Two-Dimensional Numerical Module for Contaminant Transport in Rivers. In Sediment Dynamics and Pollutant Mobility in Rivers - Interdisciplinary Approach (pp. 118–129). Springer Nature. https://research.manchester.ac.uk/en/publications/two-dimensional-numerical-module-for-contaminant-transport-in-riv
Johnson, M. F., Thorne, C. R., Castro, J. M., Kondolf, G. M., Mazzacano, C. S., Rood, S. B., & Westbrook, C. (2020). Biomic river restoration: A new focus for river management. River Research and Applications, 36(1), 3–12. https://doi.org/10.1002/rra.3529
Kulik, L., & Hennemann, M. (2012). Re-planning the post-mine landscape in the Inden opencast mine in a dialogue with the region; Neuplanung der Bergbaufolgelandschaft im Tagebau Inden im Dialog mit der Region. World of Mining—Surface and Underground, 64. Retrieved from https://www.osti.gov/etdeweb/biblio/21594780
LABO, F. S. P. W. G. (2017). Hintergrundwerte für anorganische und organische Stoffe in Böden. 4th ed. Retrieved from https://www.labo-deutschland.de/documents/LABO_HGW_Anhang_02_2017.pdf
Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., van Gestel, C. A. M., Hein, T., et al. (2009). How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European Rivers. Environmental Pollution, 157(12), 3336–3346. https://doi.org/10.1016/j.envpol.2009.06.004
LANUV NRW. (2022a). Gewässerstationierungskarte 3E NRW. Retrieved August 2, 2023, from https://www.lanuv.nrw.de/umwelt/wasser/oberflaechengewaesserfluesse-und-seen/fliessgewaesser/gewaesser-stationierungskarte/
LANUV NRW. (2022b). Gewässerstationierungskarte 3E NRW. Retrieved August 2, 2023, from https://www.lanuv.nrw.de/umwelt/wasser/oberflaechengewaesserfluesse-und-seen/fliessgewaesser/gewaesser-stationierungskarte/
LANUV NRW. (2022c). Gewässerstationierungskarte 3E NRW. Retrieved August 2, 2023, from https://www.lanuv.nrw.de/umwelt/wasser/oberflaechengewaesserfluesse-und-seen/fliessgewaesser/gewaesser-stationierungskarte/
Le Gall, M., Ayrault, S., Evrard, O., Laceby, J. P., Gateuille, D., Lefèvre, I., et al. (2018). Investigating the metal contamination of sediment transported by the 2016 Seine River flood (Paris, France). Environmental Pollution, 240, 125–139. https://doi.org/10.1016/j.envpol.2018.04.082
Lecce, S. A., & Pavlowsky, R. T. (2014). Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology, 206, 122–132. https://doi.org/10.1016/j.geomorph.2013.10.004
Lehmkuhl, F., & Stauch, G. (2023). Anthropogenic influence of open pit mining on river floods, an example of the Blessem flood 2021. Geomorphology, 421, 108522. https://doi.org/10.1016/j.geomorph.2022.108522
Lehmkuhl, F., Schüttrumpf, H., Schwarzbauer, J., Brüll, C., Dietze, M., Letmathe, P., et al. (2022). Assessment of the 2021 summer flood in Central Europe. Environmental Sciences Europe, 34(1), 107. https://doi.org/10.1186/s12302-022-00685-1
Maaß, A.-L., Esser, V., Frings, R. M., Lehmkuhl, F., & Schüttrumpf, H. (2018). A decade of fluvial morphodynamics: Relocation and restoration of the Inde River (North-Rhine Westphalia, Germany). Environmental Sciences Europe, 30(1), 40. https://doi.org/10.1186/s12302-018-0170-0
MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075
Macklin, M. G., Thomas, C. J., Mudbhatkal, A., Brewer, P. A., Hudson-Edwards, K. A., Lewin, J., et al. (2023). Impacts of metal mining on river systems: A global assessment. Science, 381(6664), 1345–1350. https://doi.org/10.1126/science.adg6704
Marron, D. C. (1989). Physical and chemical characteristics of a metal-contaminated overbank deposit, west-central South Dakota, U.S.A. Earth Surface Processes and Landforms, 14(5), 419–432. https://doi.org/10.1002/esp.3290140507
Matys Grygar, T., Elznicová, J., Tůmová, Š, Faměra, M., Balogh, M., & Kiss, T. (2016). Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology, 254, 41–56. https://doi.org/10.1016/j.geomorph.2015.11.012
Matys Grygar, Tomáš, Hošek, M., Navrátil, T., Bednárek, J., Hönig, J., Elznicová, J., et al. (2022). Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful. Water, 14(21), 3481. https://doi.org/10.3390/w14213481
McCullough, C. D. (2015). Consequences and opportunities from river breach and decant of an acidic mine pit lake. Ecological Engineering, 85, 328–338. https://doi.org/10.1016/j.ecoleng.2015.10.001
McMillan, S. K., & Noe, G. B. (2017). Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention. Ecological Engineering, 108, 284–295. https://doi.org/10.1016/j.ecoleng.2017.08.006
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. https://doi.org/10.1038/415514a
Morandi, B., Piégay, H., Lamouroux, N., & Vaudor, L. (2014). How is success or failure in river restoration projects evaluated? Feedback from French restoration projects. Journal of Environmental Management, 137, 178–188. https://doi.org/10.1016/j.jenvman.2014.02.010
Mutz, M. (1998). Stream system restoration in a strip-mining region, eastern Germany: Dimension, problems, and first steps. Aquatic Conservation: Marine and Freshwater Ecosystems, 8(1), 159–166. https://doi.org/10.1002/(SICI)1099-0755(199801/02)8:1%3c159::AID-AQC273%3e3.0.CO;2-4
Nilsson, C., Polvi, L. E., Gardeström, J., Hasselquist, E. M., Lind, L., & Sarneel, J. M. (2015). Riparian and in-stream restoration of boreal streams and rivers: Success or failure? Ecohydrology, 8(5), 753–764. https://doi.org/10.1002/eco.1480
Noe, G. B., & Hupp, C. R. (2009). Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems, 12(5), 728–746. https://doi.org/10.1007/s10021-009-9253-5
Notebaert, B., Houbrechts, G., Verstraeten, G., Broothaerts, N., Haeckx, J., Reynders, M., et al. (2011). Fluvial architecture of Belgian river systems in contrasting environments: Implications for reconstructing the sedimentation history. Netherlands Journal of Geosciences, 90(1), 31–50. https://doi.org/10.1017/S0016774600000652
Oster, A. E. (2003). Tagebau Inden - Erstellung eines Geländeeinschnittes im Rahmen einer Flussverlegung. In Surface Mining - Braunkohle & Other Minerals (Vol. 55, pp. 348–355).
Pacina, J., & Popelka, J. (2014). River network reconstruction and analyses in areas affected by heavy industry (Vol. 1). https://doi.org/10.5593/SGEM2014/B21/S8.097
Palmer, M. A., Menninger, H. L., & Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshwater Biology, 55(s1), 205–222. https://doi.org/10.1111/j.1365-2427.2009.02372.x
Paul, J. (1994). Grenzen der Belastbarkeit: Die Flüsse Rur (Roer) und Inde im Industriezeitalter. Verlag d.
Pye, K., & Blott, S. J. (2004). Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International, 144(1), 19–27. https://doi.org/10.1016/j.forsciint.2004.02.028
Resongles, E., Casiot, C., Freydier, R., Dezileau, L., Viers, J., & Elbaz-Poulichet, F. (2014a). Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Science of the Total Environment, 481, 509. https://doi.org/10.1016/j.scitotenv.2014.02.078
Ribbert, G. A. (1992). Geologischer Aufbau. In Nordrhein-Westfalen / Geologisches Landesamt (Ed.), Geologische Karte von Nordrhein-Westfalen 1:100000, Erläuterungen zu Blatt C5502 Aachen (pp. 24–28). Krefeld: Geologisches Landesamt Nordrhein-Westfalen. https://www.gd.nrw.de/pr_bs_erlaeuterungen.htm
Richard, G. A., Julien, P. Y., & Baird, D. C. (2005). Case study: modeling the lateral mobility of the rio grande below Cochiti Dam, New Mexico. Journal of Hydraulic Engineering, 131(11), 931–941. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(931)
Schmidt-Wygasch, C. (2011). Neue Untersuchungen zur holozänen Genese des Unterlaufs der Inde: Chronostratigraphische Differenzierung der Auelehme unter besonderer Berücksichtigung der Montangeschichte der Voreifel [Online, print]. Publikationsserver der RWTH Aachen University.
Schneider, F. K. (1982). Untersuchungen über den Gehalt an Blei und anderen Schwermetallen in den Böden und Halden des Raumes Stolberg (Rheinland): mit 2 Tabellen (Vol. 53). Schweizerbart.
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze, J., et al. (2016). Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. CATENA, 137, 392–405. https://doi.org/10.1016/j.catena.2015.10.015
Schulte, P., Hamacher, H., Lehmkuhl, F., & Esser, V. (2022). Initial soil formation in an artificial river valley—Interplay of anthropogenic landscape shaping and fluvial dynamics. Geomorphology, 398, 108064. https://doi.org/10.1016/j.geomorph.2021.108064
Schulz-Zunkel, C. (2014, June 20). Trace metal dynamics in floodplain soils: a case study with the river Elbe in Germany. https://macau.uni-kiel.de/receive/diss_mods_00014714
Schumacher, A., Stollberg, M., Dworschak, U., & Weglau, J. (2014). Rekultivierung im Rheinischen Braunkohlerevier : Exkursionsführer / Forschungsstelle Rekultivierung. http://epflicht.ulb.uni-bonn.de/378222
Sindern, S., Görtz, A., & Gronen, L. (2016). Historische und rezente anthropogene Schwermetalleinträge im Bereich des Montanwirtschaftsstandorts Stolberg (Rheinland) (Exkursion B am 29. März 2016). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 15–31. https://doi.org/10.1127/jmogv/98/0003
SPECTRO. (2007). Analysis of trace elements in geological materials, soils and sludges prepared as pressed pellets (ReportXRF). SPECTRO.
Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin. India. Journal of Hazardous Materials, 186(2), 1837–1846. https://doi.org/10.1016/j.jhazmat.2010.12.081
Szabó, Z., Buró, B., Szabó, J., Tóth, C. A., Baranyai, E., Herman, P., et al. (2020). Geomorphology as a Driver of Heavy Metal Accumulation Patterns in a Floodplain. Water, 12(2), 563. https://doi.org/10.3390/w12020563
Ten Brinke, W. B. M., Schoor, M. M., Sorber, A. M., & Berendsen, H. J. A. (1998). Overbank sand deposition in relation to transport volumes during large-magnitude floods in the Dutch sand-bed Rhine river system. Earth Surface Processes and Landforms, 23(9), 809–824. https://doi.org/10.1002/(SICI)1096-9837(199809)23:9%3c809::AID-ESP890%3e3.0.CO;2-1
Tobin, G. A., Brinkmann, R., & Montz, B. E. (2000). Flooding and the Distribution of Selected Metals in Floodplain Sediments in St. Maries, Idaho. Environmental Geochemistry and Health, 22(3), 219–232. https://doi.org/10.1023/A:1026502324603
UBA. (2014). Hydromorphologische Steckbriefe der deutschen Fließgewässertypen. Anhang 1 von „Strategien zur Optimierung von Fließgewässer-Renaturierungsmaßnahmen und ihrer Erfolgskontrolle. Umweltbundesamt.
UBA. (2022). Die Wasserrahmenrichtlinie—Gewässer in Deutschland 2021. Umweltbundesamt. Retrieved from https://www.umweltbundesamt.de/publikationen/die-wasserrahmenrichtlinie-gewaesser-in-deutschland
Vujić, S., Radosavljević, M., & Polavder, S. (2020). Flooding of two coal open-pit mines in serbia: the aftermath of global climate change. Journal of Mining Science, 56(1), 79–83. https://doi.org/10.1134/S1062739120016503
Walling, D. E., Owens, P. N., Carter, J., Leeks, G. J. L., Lewis, S., Meharg, A. A., & Wright, J. (2003). Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 18(2), 195–220. https://doi.org/10.1016/S0883-2927(02)00121-X
Water Framework Directive. (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy—European Environment Agency. Official Journal of the European Communities. Retrieved from https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of
Weber, A., Wolf, S., Becker, N., Märker-Neuhaus, L., Bellanova, P., Brüll, C., et al. (2023). The risk may not be limited to flooding: Polluted flood sediments pose a human health threat to the unaware public. Environmental Sciences Europe, 35(1), 58. https://doi.org/10.1186/s12302-023-00765-w
Wohl, E., Lane, S. N., & Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997. https://doi.org/10.1002/2014WR016874
Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068
Žák, K., Rohovec, J., & Navrátil, T. (2009). Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River, Czech Republic. Water, Air, and Soil Pollution, 203(1), 343–358. https://doi.org/10.1007/s11270-009-0017-9