Morpho-sedimentary dynamics associated to dam removal. The Pierre Glissotte dam (central France)

Science of The Total Environment - Tập 784 - Trang 147079 - 2021
Louis Gilet1, Frédéric Gob1, Clément Virmoux1, Emmanuèle Gautier1, Nathalie Thommeret2, Nicolas Jacob-Rousseau3
1Université Panthéon-Sorbonne (Paris 1), Laboratoire de Géographie Physique, CNRS UMR8591, 1 Place Aristide Briand, FR 92195 Meudon cedex, France
2Laboratoire Geomatique et Foncier, CNAM-ESGT, 1 Boulevard Pythagore, 72000 Le Mans, France
3Laboratoire Archéorient, UMR 5133 CNRS - Université Lumière (Lyon 2), Maison de l'Orient et de la Méditerranée, 7 Rue Raulin, 69365 Lyon Cedex 07, France

Tài liệu tham khảo

Bellmore, 2017, Status and trends of dam removal research in the United States, Wiley Interdiscip. Rev. Water, 4 Bellmore, 2019, Conceptualizing ecological responses to dam removal: if you remove it, what’s to come?, BioScience, 69, 26, 10.1093/biosci/biy152 Bradley, 2012, Measuring gravel transport and dispersion in a mountain river using passive radio tracers, Earth Surf. Process. Landf., 37, 1034, 10.1002/esp.3223 Bravard, J-P., Petit, F., 1997. Les cours d’eau, dynamique du système fluvial. A. Colin, Coll. U, Paris, 222 p. Brodu, 2012, 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology, ISPRS J. Photogramm. Remote Sens., 68, 121, 10.1016/j.isprsjprs.2012.01.006 Burroughs, 2009, Effects of Stronach dam removal on luvial geomorphology in the Pine River, Michigan, United States, Geomorphology, 110, 96, 10.1016/j.geomorph.2009.03.019 Cantelli, 2004, Experiments on upstream-migrating erosional narrowing and widening of an incisional channel caused by dam removal, Water Resour. Res., 40, 10.1029/2003WR002940 Chapuis, 2014, Detection ranges and uncertainty of passive Radio Frequency Identification (RFID) transponders for sediment tracking in gravel rivers and coastal environments, Earth Surf. Process. Landf., 39, 2109, 10.1002/esp.3620 Collins, 2017, Channel response to sediment release: insights from a paired analysis of dam removal, Earth Surf. Process. Landf., 42, 1636, 10.1002/esp.4108 Dépret, T., Gautier, E., Hooke, J., Grancher, D., Virmoux, V., Brunstein, D., 2017. Causes of planform stability of a low-energy meandering gravel-bed river (Cher River, France). Geomorphology 285, 58–81. Dépret, 2020, Lowland gravel-bed river recovery through former mining reaches, the key role of sand, Geomorphology, 373 Doyle, 2003, Channel adjustments following two dam removals in Wisconsin, Water Resour. Res., 39, 1011, 10.1029/2002WR001714 Draut, 2015, Sedimentology of new luvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal, River Res. Appl., 31, 42, 10.1002/rra.2724 Dufour, 2009, From the myth of a lost paradise to targeted river restoration: forget natural references and focus on human benefits. River Res, Appl, 25, 568581 Egan, 2000, Geomorphic efects of the removal of the Manatawny Dam, Pottstown, PA, EOS Trans. Am. Geophys. Union, 81 Evans, 2007, Sediment impacts of the 1994 failure of IVEX dam (Chagrin River, NE Ohio): a test of channel evolution models, J. Great Lakes Res., 33 (sp2, 90, 10.3394/0380-1330(2007)33[90:SIOTFO]2.0.CO;2 Ferguson, 2002, Long-term slowdown of river tracer pebbles: generic models and 813 implications for interpreting short-term tracer studies, Water Resour. Res, 38, 10.1029/2001WR000637 Foley, 2017, Dam removal: listening in, Water Resour. Res., 53, 5229, 10.1002/2017WR020457 Fonstad, 2013, Topographic structure from motion: a new development in photogrammetric measurement, Earth Surf. Process. Landf., 38, 421, 10.1002/esp.3366 Gartner, 2015, Predicting the type, location and magnitude of geomorphic responses to dam removal: role of hydrologic and geomorphic constraints, Geomorphology, 251, 20, 10.1016/j.geomorph.2015.02.023 Gilet, 2018, Suivi de l'évolution morphologique et sédimentaire de l'Yonne suite à la première phase du démantèlement du barrage de Pierre Glissotte (Massif du Morvan, France)., Géomorphologie, relief, processus, environnement, 24, 7, 10.4000/geomorphologie.11946 Gilet, 2020, Hydro-morphometric parameters controlling travel distance of pebbles and cobbles in three gravel bed streams, Geomorphology, 358, 10.1016/j.geomorph.2020.107117 Gintz, 1996, Frequency and magnitude of bedload transport in a mountain river, Earth Surf. Process. Landf., 21, 433, 10.1002/(SICI)1096-9837(199605)21:5<433::AID-ESP580>3.0.CO;2-P Gob, 2010, The influence of sediment size, relative grain size and channel slope on initiation of sediment motion in boulder bed rivers. A lichenometric study, Earth Surf. Process. Landf., 35, 1535, 10.1002/esp.1994 Grant, 2015, The remains of the dam: what have we learned from 15 years of US dam removals?, vol. 3, 31 Harris, 2014, Channel evolution of sandy reservoir sediments following low-head damremoval, Ottawa River, northwestern Ohio, U.S.A, Open Journal of Modern Hydrology, 4, 44, 10.4236/ojmh.2014.42004 Hart, 2002, Dam removal: challenges and opportunities for ecological research and river restoration, BioScience, 52, 8, 669, 10.1641/0006-3568(2002)052[0669:DRCAOF]2.0.CO;2 Haschenburger, 2011, The rate of fluvial gravel dispersion, Geophys. Res. Lett, 38, 10.1029/2011GL049928 Houbrechts, 2006, Frequency and extent of bedload transport in rivers of the Ardenne, Géog. Phys. Quatern., 60, 247 Houbrechts, 2015, Evaluation of long-termbedload virtual velocity in gravel-bed rivers (Ardenne, Belgium), Geomorphology, 251, 6, 10.1016/j.geomorph.2015.05.012 Ibisate, 2016, Geomorphic monitoring and response to two dam removals: rivers Urumea and Leitzaran (Basque Country, Spain), Earth Surf. Process. Landf., 41, 2239, 10.1002/esp.4023 Jacob-Rousseau, 2020, Le flottage du bois et ses conséquences écologiques, de l’Antiquité à l’époque contemporaine. Problèmes, matériel et méthodes pour une contribution à l’histoire environnementale, 175 Lamarre, 2008, The role of morphology on the displacement of particles in a step-pool river system, Geomorphology, 99, 270, 10.1016/j.geomorph.2007.11.005 Liébault, 2012, Bedload tracing in a high-sediment-load mountain stream, Earth Surf. Process. Landf., 37, 385, 10.1002/esp.2245 Lisle, 2001, The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers, Earth Surf. Process. Landf., 26, 1409, 10.1002/esp.300 Magilligan, 2016, Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment, Geomorphology, 252, 158, 10.1016/j.geomorph.2015.07.027 Major, 2012, Geomorphic response of the y river, Oregon, to removal of marmot dam, US Geol. Surv. Prof. Pap, 1792, 64 Major, 2017, Geomorphic responses to dam removal in the United States - a two-decade perspective, Gravel-Bed Rivers: Processes and Disasters, 355, 10.1002/9781118971437.ch13 Marteau, 2020, Geomorphological response to system-scale river rehabilitation I: sediment supply from a reconnected tributary, River Res. Appl., 36, 1488, 10.1002/rra.3683 Marteau, 2020, Geomorphic responses to system-scale river rehabilitation II: mainstem channel adjustments following reconnection of an ephemeral tributary, River Res. Appl., 36, 1472, 10.1002/rra.3682 Miwa, H., Parker, G., 2017. Effects of sand content on initial gravel motion in gravel-bed rivers: effects of sand content on initial gravel motion in gravel-bed rivers. Earth Surf. Process. Landforms 42, 1355–1364. Pearson, 2011, Rates and processes of channel response to dam removal with a sand-illed impoundment, Water Resour. Res., 47, W08504, 10.1029/2010WR009733 Peck, 2013, Multiyear assessment of the sedimentological impacts of the removals of the Munroe Falls Dam on the middle Cuyahoga River, Ohio, Rev. Eng. Geol, 21, 81 Petit, 2005, Critical unit stream power in gravel-bed rivers, Geomorphology, 69, 92, 10.1016/j.geomorph.2004.12.004 Pizzuto, 2002, Effects of dam removal on river form and process, Bioscience, 52, 683, 10.1641/0006-3568(2002)052[0683:EODROR]2.0.CO;2 Poeppl, 2017, The geomorphic legacy of small dams - an Austrian study, Anthropocene, 10, 43, 10.1016/j.ancene.2015.09.003 Poux, A.S., Gob, F., Jacob-Rousseau, N., 2011. Reconstitution des débits de crues artificielles destinées au flottage du bois dans le massif du Morvan (centre de la France, 16e-19e siècles) d'après les documents d'archive et la géomorphologie de terrain. Géomorphologie: relief, processus, environnement, 17 (2) 143–156. DOI: https://doi.org/10.4000/geomorphologie.9351. Randle, 2015, Large-scale dam removal on the Elwha River, vol. 246, 709 Rangel, 2018, The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs, Int. J. Remote Sens., 1 Ritchie, 2018, Morphodynamic evolution following sediment release from the world’s largest dam removal, Sci. Rep., 8, 13279, 10.1038/s41598-018-30817-8 Sanz-Ablanedo, 2018, Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used, Remote Sens., 10, 1606, 10.3390/rs10101606 Sawaske, 2012, A comparison of past small dam removals in highly sediment-impacted systems in the US, Geomorphology, 151, 50, 10.1016/j.geomorph.2012.01.013 Schaffrath, 2015, Landscape-scale geomorphic change detection: quantifying spatially variable uncertainty and circumventing legacy data issues, Geomorphology, 250, 334, 10.1016/j.geomorph.2015.09.020 Skalak, 2005, The Geomorphic Effects of Existing Dams and Historic Dam Removals in the Mid-Atlantic Region, USA Skalak, K., Pizzuto, J., Egan, J., Allmendinger, N., 2011. The geomorphic effects of existing dams and historic dam removals in the mid-Atlantic region, USA. in Sediment Dynamics Upon Dam Removal, edited by A. N. Papanicolaou and B. D. Barkdoll, Am. Soc. of Civ. Eng. Stanley, 2003, Trading of: the ecological effects of dam removal, Front. Ecol. Environ., 1, 15, 10.1890/1540-9295(2003)001[0015:TOTEEO]2.0.CO;2 Stewart, 2006, Patterns and Processes of Sediment Transport Following Sediment-illed Dam Removal in Gravel Bed Rivers, 100 Straub, 2007, Erosion Dynamics of a Stepwise Small Dam Removal, Brewster Creek Dam near St. Charles, Illinois, 161 Thommeret, 2016, Adaptation du protocole Carhyce aux grands cours d'eau à partir de données Lidar topo-bathymétrique. Actes de la Journée Technique “Avancées, apports et perspectives de la télédétection pour la caractérisation physique des corridors fluviaux”, 1 Tullos, 2014, Morphological responses and sediment processes following a typhoon-induced dam failure, Dahan River, Taiwan, Earth Surf. Process. Landf., 39, 245, 10.1002/esp.3446 Walter, 2010, Downstream channel changes after a small dam removal: using aerial photos and measurement error for context; Calapooia River, Oregon, River Res. Appl., 26, 1220, 10.1002/rra.1323 Warrick, 2015, Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis, Geomorphology, 246, 729, 10.1016/j.geomorph.2015.01.010 Wilcock, 2001, Experimental study of the transport of mixed sand and gravel, Water Resour. Res., 37, 3349, 10.1029/2001WR000683 Wilcox, 2014, Rapid reservoir erosion, hyperconcentrated low, and downstream deposition triggered by breaching of 38-m-tall Condit dam, white Salmon River, Washington, J. Geophys. Res. Earth Surf., 119, 1376, 10.1002/2013JF003073 Wolman, 1954, A method of sampling coarse river-bed material, Trans. Am. Geophys. Union, 35, 951, 10.1029/TR035i006p00951 Water