Mori dream spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
V.V. Batyrev and O.N. Popov, The Cox ring of a del Pezzo surface, In: Arithmetic of Higher-Dimensional Algebraic Varieties, Palo Alto, CA, 2002, Progr. Math., 226, Birkhäuser Boston, Boston, MA, 2004, pp. 85–103.
C. Birkar, P. Cascini, C.D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405–468, arXiv:math/0610203.
A.-M. Castravet, The Cox ring of $$\overline{M}_{0,6}$$ Trans. Amer. Math. Soc., 361 (2009), 3851–3878.
A.-M. Castravet and J. Tevelev, Hilbert’s 14th problem and Cox rings, Compos. Math., 142 (2006), 1479–1498.
A.-M. Castravet and J. Tevelev, Exceptional loci on $$\overline{M}_{0,n}$$ and hypergraph curves, arXiv:0809.1699v1.
D. Chen, I. Coskun and S. Nollet, Hilbert scheme of a pair of codimension two linear subspaces, arXiv:0909.5170v1.
A. Gibney, S. Keel and I. Morrison, Towards the ample cone of $$\overline{M}_{g,n}$$ , J. Amer. Math. Soc., 15 (2002), 273–294.
J.L. González, Projectivized rank two toric vector bundles are Mori dream spaces, arXiv:1001.0838v1.
C.D. Hacon and J. McKernan, Extension theorems and the existence of flips, In: Flips for 3-folds and 4-folds, (ed. A. Corti), Oxford Lecture Ser. Math. Appl., 35, Oxford Univ. Press, 2007, pp. 76–110.
C.D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type II, J. Amer. Math. Soc., 23 (2010), 469–490, arXiv:0808.1929.
J. Hausen and H. Süss, The Cox ring of an algebraic variety with torus action, arXiv:0903.4789v3.
M. Hering, M. Mustaţă and S. Payne, Positivity for toric vector bundles, arXiv:0805.4035v2.
Y. Hu and S. Keel, Mori dream spaces and GIT, Dedicated to W. Fulton on the occasion of his 60th birthday, Michigan Math. J., 48 (2000), 331–348.
S. Keel, K. Matsuki and J. McKernan, Log abundance theorem for threefolds, Duke Math. J., 75 (1994), 99–119.
S. Keel and J. McKernan, Contractible extremal rays on $$\overline{M}_{0,n}$$ , arXiv:alg-geom/9607009.
A. Laface and M.Velasco, Picard-graded Betti numbers and the defining ideals of Cox rings, J. Algebra, 322 (2009), 353–372.
V. Lazić, Adjoint rings are finitely generated, arXiv:0905.2707v2.
S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc., 1 (1988), 117–253.
S. Mukai, Geometric realization of T-shaped root systems and counterexamples to Hilbert’s fourteenth problem, In: Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia Math. Sci., 132, Springer-Verlag, Berlin, 2004, pp. 123–129.
D. Mumford, Hilbert’s fourteenth problem—the finite generation of subrings such as rings of invariants, In: Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, IL, 1974, Amer. Math. Soc., Providence, RI, 1976, pp. 431–444.
D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, third ed., Ergeb. Math. Grenzgeb. (2), 34, Springer-Verlag, Berlin, 1994.
J.C. Ottem, The Cox ring of a K3 surface with Picard number two, arXiv:0909.5121v1.
M. Păun, Relative critical exponents, non-vanishing and metrics with minimal singularities, arXiv:0807.3109v1.
V.V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat., 56 (1992), 105–203.
Y.-T. Siu, A general non-vanishing theorem and an analytic proof of the finite generation of the canonical ring, arXiv:math/0610740.
P. Vermeire, A counterexample to Fulton’s conjecture on $$\overline{M}_{0,n}$$ J. Algebra, 248 (2002), 780–784.