More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745. doi: 10.1016/j.cell.2009.01.042
Mathews M, Sonenberg N, Hershey J (2007) Origins and Principles of Translational Control. In: Mathews M, Sonenberg N, Hershey J (ed) Translational control in biology and medicine, Monograph, vol 48. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–40. ISBN 978-087969767-93
Hershey JWB, Sonenberg N, Mathews MB (2012) Principles of translational control: an overview. Cold Spring Harb Perspect Biol 4:a011528. doi: 10.1101/cshperspect.a011528
Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. doi: 10.1038/nrm2838
Piccirillo CA, Bjur E, Topisirovic I et al (2014) Translational control of immune responses: from transcripts to translatomes. Nat Immunol 15:503–511. doi: 10.1038/ni.2891
Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb Symp Quant Biol 76:355–367. doi: 10.1101/sqb.2011.76.010785
Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327. doi: 10.1038/nrm1618
Aitken CE, Lorsch JR (2012) A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 19:568–576. doi: 10.1038/nsmb.2303
Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4:a011544–a011544. doi: 10.1101/cshperspect.a011544
Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34
Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812. doi: 10.1146/annurev-biochem-060713-035802
Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292. doi: 10.1016/0092-8674(86)90762-2
Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950
Pesole G, Gissi C, Grillo G et al (2000) Analysis of oligonucleotide AUG start codon context in eukaryotic mRNAs. Gene 261:85–91
Koumenis C, Naczki C, Koritzinsky M et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22:7405–7416
Barbosa C, Peixeiro I, Romão L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9:e1003529. doi: 10.1371/journal.pgen.1003529
Xue S, Tian S, Fujii K et al (2015) RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature 517:33–38. doi: 10.1038/nature14010
Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11. doi: 10.1016/j.gene.2004.02.051
Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729. doi: 10.1016/j.molcel.2007.11.018
Martínez-Salas E, Piñeiro D, Fernández N (2012) Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comp Funct Genomics 2012:391546. doi: 10.1155/2012/391546
Jackson RJ (2013) The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol 5:a011569–a011569. doi: 10.1101/cshperspect.a011569
Elfakess R, Dikstein R (2008) A translation initiation element specific to mRNAs with very short 5′UTR that also regulates transcription. PLoS One 3:e3094. doi: 10.1371/journal.pone.0003094
Elfakess R, Sinvani H, Haimov O et al (2011) Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res 39:7598–7609. doi: 10.1093/nar/gkr484
Dikstein R (2012) Transcription and translation in a package deal: the TISU paradigm. Gene 491:1–4. doi: 10.1016/j.gene.2011.09.013
Morley SJ, Coldwell MJ (2008) A cunning stunt: an alternative mechanism of eukaryotic translation initiation. Sci Signal 1:pe32. doi: 10.1126/scisignal.125pe32
Koh DC, Edelman GM, Mauro VP (2013) Physical evidence supporting a ribosomal shunting mechanism of translation initiation for BACE1 mRNA. Translation (Austin, Tex) 1:e24400. doi: 10.4161/trla.24400
Haimov O, Sinvani H, Dikstein R (2015) Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta 1849:1313–1318. doi: 10.1016/j.bbagrm.2015.09.006
Ben-Asouli Y, Banai Y, Pel-Or Y et al (2002) Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108:221–232
Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221. doi: 10.1038/nchembio864
Dai J, Liu Z-Q, Wang X-Q et al (2015) Discovery of small molecules for up-regulating the translation of antiamyloidogenic secretase, a disintegrin and metalloproteinase 10 (ADAM10), by binding to the G-quadruplex-forming sequence in the 5′ untranslated region (UTR) of its mRNA. J Med Chem 58:3875–3891. doi: 10.1021/acs.jmedchem.5b00139
Schofield JPR, Cowan JL, Coldwell MJ (2015) G-quadruplexes mediate local translation in neurons. Biochem Soc Trans 43:338–342. doi: 10.1042/BST20150053
Liu B, Qian S-B (2014) Translational reprogramming in cellular stress response: translational reprogramming in stress. Wiley Interdiscip Rev RNA 5:301–305. doi: 10.1002/wrna.1212
Leprivier G, Rotblat B, Khan D et al (2015) Stress-mediated translational control in cancer cells. Biochim Biophys Acta Gene Regul Mech 1849:845–860. doi: 10.1016/j.bbagrm.2014.11.002
Shatsky IN, Dmitriev SE, Terenin IM, Andreev DEE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293. doi: 10.1007/s10059-010-0149-1
Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 41:1807–1816. doi: 10.1093/nar/gks1282
Andreev DE, Dmitriev SE, Zinovkin R et al (2012) The 5′ untranslated region of Apaf-1 mRNA directs translation under apoptosis conditions via a 5′ end-dependent scanning mechanism. FEBS Lett 586:4139–4143. doi: 10.1016/j.febslet.2012.10.010
Zhou J, Rode KA, Qian S-B (2016) m(6)A: a novel hallmark of translation. Cell Cycle 15:309–310. doi: 10.1080/15384101.2015.1125240
Meyer KD, Patil DP, Zhou J et al (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010. doi: 10.1016/j.cell.2015.10.012
Zhou J, Wan J, Gao X et al (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594. doi: 10.1038/nature15377
Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10:254–266
Ruggero D (2013) Translational control in cancer etiology. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a012336
Dobbyn HC, Hill K, Hamilton TL et al (2007) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27:1167–1174
Holcik M, Gordon BW, Korneluk RG (2003) The Internal Ribosome Entry Site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23:280–288. doi: 10.1128/MCB.23.1.280-288.2003
Yoon A, Peng G, Brandenburger Y et al (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312:902–906. doi: 10.1126/science.1123835
Graber TE, Baird SD, Kao PN et al (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17:719–729
Willimott S, Wagner SD (2010) Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38:1571–1575. doi: 10.1042/BST0381571
Andreucci E, Bianchini F, Biagioni A et al (2016) Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma. J Mol Med (Berl). doi: 10.1007/s00109-016-1463-7
Holmes B, Lee J, Landon KA et al (2016) Mechanistic target of rapamycin (mTOR) inhibition synergizes with reduced internal ribosome entry site (IRES)-mediated translation of cyclin D1 and c-MYC mRNAs to treat glioblastoma. J Biol Chem 291:14146–14159. doi: 10.1074/jbc.M116.726927
Bernstein J, Sella O, Le SY, Elroy-Stein O (1997) PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 272:9356–9362
Dai N, Rapley J, Angel M et al (2011) mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 25:1159–1172. doi: 10.1101/gad.2042311
Zheng Y, Miskimins WK (2011) Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. Int J Biochem Cell Biol 43:1641–1648. doi: 10.1016/j.biocel.2011.08.001
Candeias MM, Powell DJ, Roubalova E et al (2006) Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25:6936–6947. doi: 10.1038/sj.onc.1209996
Tinton SA, Schepens B, Bruynooghe Y et al (2005) Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 385:155–163. doi: 10.1042/BJ20040963
Bastide A, Karaa Z, Bornes S et al (2008) An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 36:2434–2445. doi: 10.1093/nar/gkn093
Morfoisse F, Kuchnio A, Frainay C et al (2014) Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1α-independent translation-mediated mechanism. Cell Rep 6:155–167. doi: 10.1016/j.celrep.2013.12.011
Erickson FL, Hannig EM (1996) Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit. EMBO J 15:6311–6320
Gomez E, Mohammad SS, Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. EMBO J 21:5292–5301. doi: 10.1093/emboj/cdf515
Kapp LD, Lorsch JR (2004) GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 335:923–936. doi: 10.1016/j.jmb.2003.11.025
Valásek L, Nielsen KH, Hinnebusch AG (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21:5886–5898
Olsen DS, Savner EM, Mathew A et al (2003) Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 22:193–204. doi: 10.1093/emboj/cdg030
Pestova TV, Borukhov SI, Hellen CUT (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859. doi: 10.1038/29703
Majumdar R (2003) Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J Biol Chem 278:6580–6587. doi: 10.1074/jbc.M210357200
Kolupaeva VG (2005) Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–486. doi: 10.1261/rna.7215305
Lomakin IB, Steitz TA (2013) The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500:307–311. doi: 10.1038/nature12355
des Georges A, Dhote V, Kuhn L et al (2015) Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature 525:491–495. doi: 10.1038/nature14891
Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922. doi: 10.1101/gad.1020902
Pause A, Sonenberg N (1992) Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11:2643–2654
Oberer M, Marintchev A, Wagner G (2005) Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19:2212–2223. doi: 10.1101/gad.1335305
Pestova TV, Lomakin IB, Lee JH et al (2000) The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332–335. doi: 10.1038/35002118
Özeş AR, Feoktistova K, Avanzino BC et al (2011) Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J Mol Biol 412:674–687. doi: 10.1016/j.jmb.2011.08.004
Villa N, Do A, Hershey JWB, Fraser CS (2013) Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem 288:32932–32940. doi: 10.1074/jbc.M113.517011
Wagner S, Herrmannová A, Malík R et al (2014) Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol 34:3041–3052. doi: 10.1128/MCB.00663-14
Sen ND, Zhou F, Harris MS et al (2016) eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci USA 113:10464–10472. doi: 10.1073/pnas.1612398113
Hashem Y, des Georges A, Dhote V et al (2013) Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153:1108–1119. doi: 10.1016/j.cell.2013.04.036
Pisareva VP, Pisarev AV (2016) DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context. Nucleic Acids Res 44:4252–4265. doi: 10.1093/nar/gkw240
De La Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci 94:5201–5206
Lind C, Åqvist J (2016) Principles of start codon recognition in eukaryotic translation initiation. Nucleic Acids Res 44:8425–8432. doi: 10.1093/nar/gkw534
Pisareva VP, Pisarev AV (2014) eIF5 and eIF5B together stimulate 48S initiation complex formation during ribosomal scanning. Nucleic Acids Res 42:12052–12069. doi: 10.1093/nar/gku877
Kuhle B, Ficner R (2014) eIF5B employs a novel domain release mechanism to catalyze ribosomal subunit joining. EMBO J 33:1177–1191. doi: 10.1002/embj.201387344
Lee JH, Pestova TV, Shin B-S et al (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci USA 99:16689–16694. doi: 10.1073/pnas.262569399
Shin B-S, Maag D, Roll-Mecak A et al (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–1025
Acker MG, Shin B-S, Dever TE, Lorsch JR (2006) Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 281:8469–8475. doi: 10.1074/jbc.M600210200
Jennings MD, Zhou Y, Mohammad-Qureshi SS et al (2013) eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate guanine nucleotide exchange for translation initiation. Genes Dev 27:2696–2707. doi: 10.1101/gad.231514.113
Hershey JW (2010) Regulation of protein synthesis and the role of eIF3 in cancer. Braz J Med Biol Res 43:920–930
Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480. doi: 10.1038/nature03205
Hellen CUT (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612. doi: 10.1101/gad.891101
Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325. doi: 10.1038/334320a0
Jang S, Krausslich H, Nicklin M et al (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643
Lozano G, Martínez-Salas E (2015) Structural insights into viral IRES-dependent translation mechanisms. Curr Opin Virol 12:113–120. doi: 10.1016/j.coviro.2015.04.008
Hellen CU (2009) IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta Gene Regul Mech 1789:558–570. doi: 10.1016/j.bbagrm.2009.06.001
Komar AA, Hatzoglou M (2015) Exploring internal ribosome entry sites as therapeutic targets. Front Oncol 5:233. doi: 10.3389/fonc.2015.00233
Balvay L, Soto Rifo R, Ricci EP et al (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789:542–557. doi: 10.1016/j.bbagrm.2009.07.005
Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33:274–283. doi: 10.1016/j.tibs.2008.04.007
Filbin ME, Kieft JS (2009) Toward a structural understanding of IRES RNA function. Curr Opin Struct Biol 19:267–276. doi: 10.1016/j.sbi.2009.03.005
Kieft JS, Zhou K, Jubin R et al (1999) The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292:513–529. doi: 10.1006/jmbi.1999.3095
Song Y, Tzima E, Ochs K et al (2005) Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA 11:1809–1824. doi: 10.1261/rna.7430405
Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94. doi: 10.1038/353090a0
Spriggs KA, Stoneley M, Bushell M, Willis AE (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38. doi: 10.1042/BC20070098
Weingarten-Gabbay S, Elias-Kirma S, Nir R et al (2016) Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science. doi: 10.1126/science.aad4939
Mokrejš M, Mašek T, Vopálenskỳ V et al (2010) IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136
Shi Y, Yang Y, Hoang B et al (2016) Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 35:1015–1024. doi: 10.1038/onc.2015.156
Philippe C, Dubrac A, Quelen C et al (2016) PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress. Sci Signal 9:ra44. doi: 10.1126/scisignal.aaf2753
Khan D, Katoch A, Das A et al (2015) Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 22:1203–1218. doi: 10.1038/cdd.2014.220
Liberman N, Gandin V, Svitkin YV et al (2015) DAP5 associates with eIF2 and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Res 43:3764–3775. doi: 10.1093/nar/gkv205
Vaklavas C, Grizzle WE, Choi H et al (2016) IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumour Biol 37:13247–13264. doi: 10.1007/s13277-016-5161-4
Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280:23425–23428. doi: 10.1074/jbc.R400041200
Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10:229–240. doi: 10.4161/cc.10.2.14472
Lewis SM, Holcik M (2008) For IRES trans-acting factors, it is all about location. Oncogene 27:1033–1035. doi: 10.1038/sj.onc.1210777
Spriggs KA, Bushell M, Mitchell SA, Willis AE (2005) Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 12:585–591. doi: 10.1038/sj.cdd.4401642
Sweeney TR, Abaeva IS, Pestova TV, Hellen CUT (2014) The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 33:76–92. doi: 10.1002/embj.201386124
Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12:1755–1785. doi: 10.1261/rna.157806
Le SY, Maizel JV Jr (1997) A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 25:362–369
Grillo G (2003) PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res 31:3608–3612. doi: 10.1093/nar/gkg548
Jackson RJ (1991) mRNA translation. Initiation without an end. Nature 353:14–15. doi: 10.1038/353014a0
Riley A, Jordan LE, Holcik M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4665–4674. doi: 10.1093/nar/gkq241
Thakor N, Holcik M (2012) IRES-mediated translation of cellular messenger RNA operates in eIF2-independent manner during stress. Nucleic Acids Res 40:541–552. doi: 10.1093/nar/gkr701
Holcik M (2015) Could the eIF2α-independent translation be the Achilles heel of cancer? Front Oncol 5:264. doi: 10.3389/fonc.2015.00264
Tsai BP, Jimenez J, Lim S et al (2014) A novel Bcr-Abl-mTOR-eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biol 4:140180. doi: 10.1098/rsob.140180
Colussi TM, Costantino DA, Zhu J et al (2015) Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 519:110–113. doi: 10.1038/nature14219
Costantino DA, Pfingsten JS, Rambo RP, Kieft JS (2008) tRNA–mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 15:57–64. doi: 10.1038/nsmb1351
Olejniczak M, Dale T, Fahlman RP, Uhlenbeck OC (2005) Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat Struct Mol Biol 12:788–793. doi: 10.1038/nsmb978
Noller HF, Hoang L, Fredrick K (2005) The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett 579:855–858. doi: 10.1016/j.febslet.2004.11.026
Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F et al (2006) Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 20:476–478. doi: 10.1096/fj.04-3314fje
Audigier S, Guiramand J, Prado-Lourenco L et al (2008) Potent activation of FGF-2 IRES-dependent mechanism of translation during brain development. RNA 14:1852–1864. doi: 10.1261/rna.790608
Conte C, Ainaoui N, Delluc-Clavieres A et al (2009) Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 37:5267–5278. doi: 10.1093/nar/gkp550
Cornelis S, Bruynooghe Y, Denecker G et al (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605
Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5:607–616
Hsu K-S, Guan B-J, Cheng X et al (2016) Translational control of PML contributes to TNFα-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 23:469–483. doi: 10.1038/cdd.2015.114
Marcel V, Ghayad SE, Belin S et al (2013) p53 Acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24:318–330. doi: 10.1016/j.ccr.2013.08.013
Bornes S, Prado-Lourenco L, Bastide A et al (2007) Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circ Res 100:305–308. doi: 10.1161/01.RES.0000258873.08041.c9
Ozretić P, Bisio A, Musani V et al (2015) Regulation of human PTCH1b expression by different 5′ untranslated region cis-regulatory elements. RNA Biol 12:290–304. doi: 10.1080/15476286.2015.1008929
Kress TR, Sabò A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607. doi: 10.1038/nrc3984
Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 85:651–765. doi: 10.1124/mol.113.089623
Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765. doi: 10.1093/jb/mvp167
Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. doi: 10.1016/j.apsb.2015.05.007
Rohban S, Campaner S (2015) Myc induced replicative stress response: how to cope with it and exploit it. Biochim Biophys Acta 1849:517–524. doi: 10.1016/j.bbagrm.2014.04.008
Ye AY, Liu Q-R, Li C-Y et al (2014) Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes. PLoS One 9:e88883. doi: 10.1371/journal.pone.0088883
Taub DD (2004) Cytokine, growth factor, and chemokine ligand database. Curr Protoc Immunol Chapter 6:Unit 6.29. doi: 10.1002/0471142735.im0629s61
Casimiro MC, Crosariol M, Loro E et al (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3:649–657. doi: 10.1177/1947601913479022
Simon AE, Miller WA (2013) 3′ cap-independent translation enhancers of plant viruses. Annu Rev Microbiol 67:21–42. doi: 10.1146/annurev-micro-092412-155609
Rakotondrafara AM, Polacek C, Harris E, Miller WA (2006) Oscillating kissing stem-loop interactions mediate 5′ scanning-dependent translation by a viral 3′-cap-independent translation element. RNA 12:1893–1906. doi: 10.1261/rna.115606
Blanco-Pérez M, Pérez-Cañamás M, Ruiz L, Hernández C (2016) Efficient translation of Pelargonium line pattern virus RNAs relies on a TED-like 3′-translational enhancer that communicates with the corresponding 5′-region through a long-distance RNA–RNA interaction. PLoS One 11:e0152593. doi: 10.1371/journal.pone.0152593
Fabian MR, White KA (2004) 5′-3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mrna: a potential common mechanism for tombusviridae. J Biol Chem 279:28862–28872. doi: 10.1074/jbc.M401272200
Roberts R, Zhang J, Mayberry LK et al (2015) A unique 5′ translation element discovered in Triticum Mosaic Virus. J Virol 89:12427–12440. doi: 10.1128/JVI.02099-15
Soengas MS, Alarcón RM, Yoshida H et al (1999) Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284:156–159
Soengas MS, Capodieci P, Polsky D et al (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211. doi: 10.1038/35051606
Ungureanu NH, Cloutier M, Lewis SM et al (2006) Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem 281:15155–15163. doi: 10.1074/jbc.M511319200
Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. doi: 10.1038/nature11112
Meyer KD, Saletore Y, Zumbo P et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. doi: 10.1016/j.cell.2012.05.003
Wang Y, Li Y, Toth JI et al (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198. doi: 10.1038/ncb2902
Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. doi: 10.1038/nature12730
Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399. doi: 10.1016/j.cell.2015.05.014
Hernández G, Vázquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10:1783–1797. doi: 10.1261/rna.7154104
Rubtsova MP, Sizova DV, Dmitriev SE et al (2003) Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. J Biol Chem 278:22350–22356. doi: 10.1074/jbc.M303213200
Sun J, Conn CS, Han Y et al (2011) PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J Biol Chem 286:6791–6800. doi: 10.1074/jbc.M110.172882
Bert AG, Grépin R, Vadas MA, Goodall GJ (2006) Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA 12:1074–1083. doi: 10.1261/rna.2320506
Delatte B, Wang F, Ngoc LV et al (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–285. doi: 10.1126/science.aac5253
Schwartz S, Mumbach MR, Jovanovic M et al (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296. doi: 10.1016/j.celrep.2014.05.048
Zhang J, Addepalli B, Yun K-Y et al (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3:e2410. doi: 10.1371/journal.pone.0002410
Bruggeman Q, Garmier M, de Bont L et al (2014) The polyadenylation factor subunit cleavage and polyadenylation specificity factor 30: a key factor of programmed cell death and a regulator of immunity in Arabidopsis. Plant Physiol 165:732–746. doi: 10.1104/pp.114.236083
Chakrabarti M, Hunt A (2015) CPSF30 at the interface of alternative polyadenylation and cellular signaling in plants. Biomolecules 5:1151–1168
Burgess A, David R, Searle IR (2016) Deciphering the epitranscriptome: a green perspective. J Integr Plant Biol 58:822–835. doi: 10.1111/jipb.12483
Shi Z, Barna M (2015) Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 31:31–54. doi: 10.1146/annurev-cellbio-100814-125346
Pichon X, Wilson LA, Stoneley M et al (2012) RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 13:294–304
Dvir S, Velten L, Sharon E et al (2013) Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci USA 110:E2792–E2801. doi: 10.1073/pnas.1222534110
Xue S, Barna M (2015) Cis-regulatory RNA elements that regulate specialized ribosome activity. RNA Biol 12:1083–1087. doi: 10.1080/15476286.2015.1085149
Wang S-K, Wu Y, Ou T-M (2015) RNA G-quadruplex: the new potential targets for Ttherapy. Curr Top Med Chem 15:1947–1956
Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40:4727–4741. doi: 10.1093/nar/gks068
Beaudoin J-D, Perreault J-P (2010) 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 38:7022–7036. doi: 10.1093/nar/gkq557
Balkwill GD, Derecka K, Garner TP et al (2009) Repression of translation of human estrogen receptor alpha by G-quadruplex formation. Biochemistry 48:11487–11495
Bonnal S (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336. doi: 10.1074/jbc.M305580200
Morris MMJ, Negishi Y, Pazsint C et al (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 132:17831–17839. doi: 10.1021/ja106287x
Arcondéguy T, Lacazette E, Millevoi S et al (2013) VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 41:7997–8010. doi: 10.1093/nar/gkt539
Cammas A, Dubrac A, Morel B et al (2015) Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol 12:320–329. doi: 10.1080/15476286.2015.1017236
Gerlitz G, Jagus R, Elroy-Stein O (2002) Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269:2810–2819
Takeda M (2004) A unique role of an amino terminal 16-residue region of long-type GATA-6. J Biochem 135:639–650. doi: 10.1093/jb/mvh077
Yaman I, Fernandez J, Liu H et al (2003) The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113:519–531
Fernandez J, Yaman I, Huang C et al (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416. doi: 10.1016/j.molcel.2004.12.024
Chen T-M, Shih Y-H, Tseng JT et al (2014) Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res 42:2932–2944. doi: 10.1093/nar/gkt1286
Fernandez J, Yaman I, Merrick WC et al (2002) Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277:2050–2058. doi: 10.1074/jbc.M109199200
Kondrashov N, Pusic A, Stumpf CR et al (2011) Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145:383–397. doi: 10.1016/j.cell.2011.03.028
Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369. doi: 10.1038/nrm3359
Diederichs S, Bartsch L, Berkmann JC et al (2016) The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol Med 8:442–457. doi: 10.15252/emmm.201506055
Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532. doi: 10.1128/MCB.01145-06
Braunstein S, Karpisheva K, Pola C et al (2007) A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28:501–512. doi: 10.1016/j.molcel.2007.10.019
Gaccioli F, Huang CC, Wang C et al (2006) Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281:17929–17940. doi: 10.1074/jbc.M600341200
Lewis SM, Cerquozzi S, Graber TE et al (2007) The eIF4G homolog DAP5/p97 supports the translation of select mRNAs during endoplasmic reticulum stress. Nucleic Acids Res 36:168–178. doi: 10.1093/nar/gkm1007
Stein I, Itin A, Einat P et al (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119
Lang KJ, Kappel A, Goodall GJ (2002) Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13:1792–1801
Schepens B, Tinton SA, Bruynooghe Y et al (2005) The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 33:6884–6894. doi: 10.1093/nar/gki1000
Conte C, Riant E, Toutain C et al (2008) FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. PLoS ONE 3:e3078. doi: 10.1371/journal.pone.0003078
Young RM, Wang S-J, Gordan JD et al (2008) Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem 283:16309–16319. doi: 10.1074/jbc.M710079200
Silvera D, Schneider RJ (2009) Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 8:3091–3096
Silvera D, Arju R, Darvishian F et al (2009) Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908. doi: 10.1038/ncb1900
Vagner S, Gensac MC, Maret A et al (1995) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44
Martineau Y, Le Bec C, Monbrun L et al (2004) Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol Cell Biol 24:7622–7635. doi: 10.1128/MCB.24.17.7622-7635.2004
Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11:709–724. doi: 10.1677/erc.1.00535
Lien I-C, Horng L-Y, Hsu P-L et al (2014) Internal ribosome entry site of bFGF is the target of thalidomide for IMiDs development in multiple myeloma. Genes Cancer 5:127–141
Huang Y, Jin C, Hamana T et al (2015) Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 11:948–960. doi: 10.7150/ijbs.12468
Yeh SH, Bin Yang W, Gean PW et al (2011) Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway. Nucleic Acids Res 39:5412–5423. doi: 10.1093/nar/gkr161
Hung C-Y, Yang W-B, Wang S-A et al (2014) Nucleolin enhances internal ribosomal entry site (IRES)-mediated translation of Sp1 in tumorigenesis. Biochim Biophys Acta Mol Cell Res 1843:2843–2854. doi: 10.1016/j.bbamcr.2014.08.009
Bisio A, Latorre E, Andreotti V et al (2015) The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget 6:39980–39994. doi: 10.18632/oncotarget.5387
Hundsdoerfer P, Thoma C, Hentze MW (2005) Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl Acad Sci USA 102:13421–13426. doi: 10.1073/pnas.0506536102
Fernandez J, Yaman I, Mishra R et al (2001) Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276:12285–12291. doi: 10.1074/jbc.M009714200
Fernandez J, Bode B, Koromilas A et al (2002) Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277:11780–11787. doi: 10.1074/jbc.M110778200
Majumder M, Yaman I, Gaccioli F et al (2009) The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 29:2899–2912. doi: 10.1128/MCB.01774-08
Lu Y, Wang W, Wang J et al (2013) Overexpression of arginine transporter CAT-1 is associated with accumulation of l-arginine and cell growth in human colorectal cancer tissue. PLoS One 8:e73866. doi: 10.1371/journal.pone.0073866
Damiano F, Alemanno S, Gnoni GV, Siculella L (2010) Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site. Biochem J 429:603–612. doi: 10.1042/BJ20091827
Damiano F, Rochira A, Tocci R et al (2013) hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. Biochem J 449:543–553. doi: 10.1042/BJ20120906
Li W, Tai Y, Zhou J et al (2012) Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle 11:2348–2358. doi: 10.4161/cc.20811
Liu T, Zhang H, Xiong J et al (2015) Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer 14:65. doi: 10.1186/s12943-015-0334-0
Holcik M, Lefebvre C, Yeh C et al (1999) A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1:190–192. doi: 10.1038/11109
Holcik M, Yeh C, Korneluk RG, Chow T (2000) Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19:4174–4177. doi: 10.1038/sj.onc.1203765
Fu Q, Chen Z, Gong X et al (2015) β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun 461:21–27. doi: 10.1016/j.bbrc.2015.03.161
Townsend PA, Dublin E, Hart IR et al (2002) BAG-i expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J Pathol 197:51–59. doi: 10.1002/path.1081
Ott G, Rosenwald A, Campo E (2013) Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 122:3884–9381. doi: 10.1182/blood-2013-05-498329
Subkhankulova T, Mitchell SA, Willis AE (2001) Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J 359:183–192
Yang X, Hao Y, Ferenczy A et al (1999) Overexpression of anti-apoptotic gene BAG-1 in human cervical cancer. Exp Cell Res 247:200–207. doi: 10.1006/excr.1998.4349
Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE (2004) BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279:29066–29074. doi: 10.1074/jbc.M402727200
Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE (2004) Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. RNA 10:469–481
Faye MD, Beug ST, Graber TE et al (2015) IGF2BP1 controls cell death and drug resistance in rhabdomyosarcomas by regulating translation of cIAP1. Oncogene 34:1532–1541. doi: 10.1038/onc.2014.90
Vanasse GJ, Winn RK, Rodov S et al (2004) Bcl-2 overexpression leads to increases in suppressor of cytokine signaling-3 expression in B cells and de novo follicular lymphoma. Mol Cancer Res 2:620–631
Ray PS, Grover R, Das S (2006) Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7:404–410. doi: 10.1038/sj.embor.7400623
Grover R, Ray PS, Das S (2008) Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7:2189–2198
Khan D, Sharathchandra A, Ponnuswamy A et al (2013) Effect of a natural mutation in the 5′ untranslated region on the translational control of p53 mRNA. Oncogene 32:4148–4159. doi: 10.1038/onc.2012.422
Malbert-Colas L, Ponnuswamy A, Olivares-Illana V et al (2014) HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 54:500–511. doi: 10.1016/j.molcel.2014.02.035
Sharathchandra A, Lal R, Khan D, Das S (2012) Annexin A2 and PSF proteins interact with p53 IRES and regulate translation of p53 mRNA. RNA Biol 9:1429–1439. doi: 10.4161/rna.22707
Weingarten-Gabbay S, Khan D, Liberman N et al (2014) The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA. Oncogene 33:611–618. doi: 10.1038/onc.2012.626
Halaby M-J, Harris BRE, Miskimins WK et al (2015) Deregulation of IRES-mediated p53 translation in cancer cells with defective p53 response to DNA damage. Mol Cell Biol 35:4006–4017. doi: 10.1128/MCB.00365-15
Halaby M-J, Li Y, Harris BR et al (2015) Translational control protein 80 stimulates IRES-mediated translation of p53 mRNA in response to DNA damage. Biomed Res Int 2015:708158. doi: 10.1155/2015/708158
Candeias MM, Hagiwara M, Matsuda M (2016) Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO Rep 17:1542–1551. doi: 10.15252/embr.201541956
Li W, Thakor N, Xu EY et al (2010) An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res 38:778–788. doi: 10.1093/nar/gkp1048
Shay KP, Michels AJ, Li W et al (2012) Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim Biophys Acta 1823:1102–1109. doi: 10.1016/j.bbamcr.2012.04.002
Zhang J, Dinh TN, Kappeler K et al (2012) La autoantigen mediates oxidant induced de novo Nrf2 protein translation. Mol Cell Proteomics 11(M111):015032. doi: 10.1074/mcp.M111.015032
Saw CLL, Kong A-NT (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin Ther Targets 15:281–295. doi: 10.1517/14728222.2011.553602
Wang X, Zhao Y, Xiao Z et al (2009) Alternative translation of OCT4 by an internal ribosome entry site and its novel function in stress response. Stem Cells 27:1265–1275. doi: 10.1002/stem.58
Xiao Z-S, Simpson LG, Quarles LD (2003) IRES-dependent translational control of Cbfa1/Runx2 expression. J Cell Biochem 88:493–505. doi: 10.1002/jcb.10375
Lucero CMJ, Vega OA, Osorio MM et al (2013) The cancer-related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines. J Cell Physiol 228:714–723. doi: 10.1002/jcp.24218
Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602
Bellodi C, Kopmar N, Ruggero D (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29:1865–1876