More sensitive correlation of afferent pupillary defect with ganglion cell complex
Tài liệu tham khảo
Brown, 1987, The afferent pupillary defect in asymmetric glaucoma, Arch Ophthalmol, 105, 1540, 10.1001/archopht.1987.01060110086038
Bell, 1993, Clinical grading of relative afferent papillary defects, Arch Ophthalmol, 111, 938, 10.1001/archopht.1993.01090070056019
Tatsumi, 2007, Quantification of retinal nerve fiber layer thickness reduction associated with a relative afferent pupillary defect in asymmetric glaucoma, Br J Ophthalmol, 91, 633, 10.1136/bjo.2006.105494
Younis, 2010, Correlation of relative afferent pupillary defect and retinal nerve fiber layer loss in unilateral or asymmetric demyelinating optic neuropathy, Ophthalmol Vis Sci, 51, 4013, 10.1167/iovs.09-4644
Chew, 2010, Retinal nerve fiber layer loss in glaucoma patients with a relative afferent pupillary defect, Invest Ophthalmol Vis Sci, 51, 5049, 10.1167/iovs.09-4216
Cettomai, 2010, Association between retinal fiber layer abnormalities and optic nerve examination, Neurology, 75, 1318, 10.1212/WNL.0b013e3181f735bd
Nakanishi, 2006, Quantification of retinal nerve fiber layerthickness reduction associated with a relative afferent pupillary defect, Graefes Arch Clin Exp Ophthalmol, 244, 1480, 10.1007/s00417-006-0327-1
Tatham, 2014, Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect, Invest Ophthalmol Vis Sci, 55, 513, 10.1167/iovs.13-12921
Kerrison, 2001, Quantification of optic nerve axon loss associated with a relative afferent pupillary defect in the monkey, Arch Ophthalmol, 119, 1333, 10.1001/archopht.119.9.1333
Rao, 2011, Effect of disease severity and optic disc size on diagnostic accuracy of RTVue spectral domain optical coherence tomograph in glaucoma, Invest Ophthalmol Vis Sci, 52, 1290, 10.1167/iovs.10-5546
Huang, 2009, Introduction to RTVue for glaucoma diagnosis, 3
Naghizadeh, 2014, Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph, J Glaucoma, 23, 195, 10.1097/IJG.0b013e31826a9707
Cao, 2011, Functional loss in the magnocellular and parvocellular pathways in patients with optic neuritis, Invest Ophthalmol Vis Sci, 52, 8900, 10.1167/iovs.11-7644
Levin, 1983, A clinicopathologic study of optic neuropathies associated with intracranial mass lesions with quantification of remaining axons, Am J Ophthalmol, 95, 295, 10.1016/S0002-9394(14)78297-2
Lagreze, 1998, Correlation of relative afferent pupillary defect and estimated retinal ganglion cell loss, Graefes Arch Clin Exp Ophthalmol, 236, 401, 10.1007/s004170050096
Kardon, 1993, The relationship between static perimetry and the relative afferent pupillary defect, Am J Ophthalmol, 115, 351, 10.1016/S0002-9394(14)73587-1
Rosenberg, 1990, The use of crossed polarized filters in the measurement of the relative afferent pupillary defect, Am J Ophthalmol, 110, 62, 10.1016/S0002-9394(14)76939-9
McCormick, 2002, Quantifying relative afferent pupillary defects using a Sbisa bar, Br J Ophthalmol, 86, 985, 10.1136/bjo.86.9.985
Kim, 2014, Relationship between visual acuity and retinal structures measured by spectral domain optical coherence tomography in patients with open-angle glaucoma, Invest Ophthalmol Vis Sci, 55, 4801, 10.1167/iovs.13-13052
Sihota, 2015, Temporal retinal thickness in eyes with glaucomatous visual field defects using optical coherence tomography, J Glaucoma, 24, 257, 10.1097/IJG.0b013e3181e079cd
Guedes, 2003, Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes, Ophthalmology, 110, 177, 10.1016/S0161-6420(02)01564-6
Galindo-Romero, 2013, Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat, Exp Eye Res, 108, 84, 10.1016/j.exer.2012.12.010
Gracitelli, 2014, A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma, Invest Ophthalmol Vis Sci, 55, 7997, 10.1167/iovs.14-15146
Lankaranian, 2005, The usefulness of a new method of testing for a relative afferent pupillary defect in patients with ocular hypertension and glaucoma, Trans Am Ophthalmol Soc, 103, 200
Jonas, 1990, Quantitative pupillometry of relative afferent defects in glaucoma, Arch Ophthalmol, 108, 479, 10.1001/archopht.1990.01070060025009
Harwerth, 2010, Linking structure and function in glaucoma, Prog Retin Eye Res, 29, 249, 10.1016/j.preteyeres.2010.02.001
Medeiros, 2012, A combined index of structure and function for staging glaucomatous damage, Arch Ophthalmol, 130, 1107, 10.1001/archophthalmol.2012.827
Medeiros, 2012, Estimating the rate of retinal ganglion cell loss in glaucoma, Am J Ophthalmol, 154, 814, 10.1016/j.ajo.2012.04.022
Medeiros, 2012, The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change, Invest Ophthalmol Vis Sci, 53, 6939, 10.1167/iovs.12-10345
Chang, 2013, Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect, Invest Ophthalmol Vis Sci, 54, 5596, 10.1167/iovs.13-12142
Hood, 2015, Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps, Invest Ophthalmol Vis Sci, 56, 6208, 10.1167/iovs.15-17259
Chen, 2009, Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis), Trans Am Ophthalmol Soc, 107, 254
Leung, 2010, Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma, Ophthalmology, 117, 2337, 10.1016/j.ophtha.2010.04.002
Noval, 2011, Optical coherence tomography in multiple sclerosis and neuromyelitis optica: an update, Mult Scler Int, 2011
Wen, 2016, Microcystic macular changes in primary open-angle glaucoma, J Glaucoma, 25, 258, 10.1097/IJG.0000000000000129
Wolff, 2013, Retinal inner nuclear layer microcystic changes in optic nerve atrophy: a novel spectral-domain OCT finding, Retina, 33, 2133, 10.1097/IAE.0b013e31828e68d0