More on the Colorful Monochromatic Connectivity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008)
Cai, Q., Li, X., Wu, D.: Erdős-Gallai-type results for colorful monochromatic connectivity of a graph. J. Comb. Optim. doi: 10.1007/s10878-015-9938-y
Caro, Y., Lev, A., Roditty, Y., Tuza, Z., Yuster, R.: On rainbow connection. Electron. J. Comb. 15, #R57 (2008)
Chen, L., Li, X., Yang, K., Zhao, Y.: The 3-rainbow index of a graph. Discuss. Math. Graph Theory 35, 81–94 (2015)
Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133, 85–98 (2008)
Chartrand, G., Johns, G., McKeon, K., Zhang, P.: The rainbow connectivity of a graph. Networks 54(2), 75–81 (2009)
Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)
Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)
He, J., Liang, H.: On rainbow- $$k$$ k -connectivity of random graphs. Inf. Process. Lett. 112, 406–410 (2012)
Huang, X., Li, X., Shi, Y.: Note on the hardness of rainbow connections for planar and line graphs. Bull. Malays. Math. Sci. Soc. 38, 1235–1241 (2015)
Li, X., Sun, Y.: Rainbow Connections of Graphs. Springer Briefs in Mathematics. Springer, New York (2012)
Li, X., Sun, Y., Zhao, Y.: Characterization of graphs with rainbow connection number $$m-2$$ m - 2 and $$m-3$$ m - 3 . Aust. J. Comb. 60, 306–313 (2014)
Li, X., Schiermeyer, I., Yang, K., Zhao, Y.: Graphs with 3-rainbow index $$n-1$$ n - 1 and $$n-2$$ n - 2 . Discuss. Math. Graph Theory 35(1), 105–120 (2015)