More on “Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index”

Discrete Applied Mathematics - Tập 157 - Trang 2938-2944 - 2009
Ljiljana Pavlović1, Mirjana Lazić1, Tatjana Aleksić1
1Faculty of Science and Mathematics, Department of Mathematics, Radoja Domanovića 12, Kragujevac, Serbia

Tài liệu tham khảo

Aouchiche, 2008, Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph, Eur. J. Oper. Res., 191, 661, 10.1016/j.ejor.2006.12.059 Bollobás, 1998, Graphs of extremal weights, Ars Combin., 50, 225 Caporossi, 1999, Variable neighborhood search for extremal graphs IV: Chemical trees with extremal connectivity index, Comput. Chem., 23, 469, 10.1016/S0097-8485(99)00031-5 Caporossi, 2003, Graphs with maximum connectivity index, Comput. Biol. Chem., 27, 85, 10.1016/S0097-8485(02)00016-5 Clark, 2000, On the General Randić Index for Certain Families of Trees, Ars Combin., 54, 223 Hu, 2007, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math., 155, 1044, 10.1016/j.dam.2006.11.008 Hu, 2005, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem., 54, 425 Kier, 1976 Kier, 1986 Li, 2006, vol. 1 Li, 2005, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54, 195 Pavlović, 2003, Maximal value of the zeroth-order Randić index, Discrete Appl. Math., 127, 615, 10.1016/S0166-218X(02)00392-X Randić, 1975, On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609, 10.1021/ja00856a001