More on “Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index”
Tài liệu tham khảo
Aouchiche, 2008, Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph, Eur. J. Oper. Res., 191, 661, 10.1016/j.ejor.2006.12.059
Bollobás, 1998, Graphs of extremal weights, Ars Combin., 50, 225
Caporossi, 1999, Variable neighborhood search for extremal graphs IV: Chemical trees with extremal connectivity index, Comput. Chem., 23, 469, 10.1016/S0097-8485(99)00031-5
Caporossi, 2003, Graphs with maximum connectivity index, Comput. Biol. Chem., 27, 85, 10.1016/S0097-8485(02)00016-5
Clark, 2000, On the General Randić Index for Certain Families of Trees, Ars Combin., 54, 223
Hu, 2007, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math., 155, 1044, 10.1016/j.dam.2006.11.008
Hu, 2005, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem., 54, 425
Kier, 1976
Kier, 1986
Li, 2006, vol. 1
Li, 2005, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54, 195
Pavlović, 2003, Maximal value of the zeroth-order Randić index, Discrete Appl. Math., 127, 615, 10.1016/S0166-218X(02)00392-X
Randić, 1975, On characterization of molecular branching, J. Am. Chem. Soc., 97, 6609, 10.1021/ja00856a001