Monte Carlo study of carrier transport in two-dimensional transition metal dichalcogenides: high-field characteristics and MOSFET simulation

Springer Science and Business Media LLC - Tập 22 - Trang 1240-1256 - 2023
Sanjay Gopalan1, Shoaib Mansoori1, Maarten Van de Put2, Gautam Gaddemane2, Massimo Fischetti1
1Department of Material Science and Engineering, The University of Texas at Dallas, Richardson, USA
2IMEC, Leuven, Belgium

Tóm tắt

Field-effect transistors (FETs) having two-dimensional (2D) materials as the channel offer superior gate control and decreased short-channel effects when compared to bulk-semiconductor channels. Here, employing ab initio band structure and scattering rates as input to Monte Carlo simulations, we investigate the electron-transport characteristics in monolayer MoS2 and WSe2 at high fields and simulate double-gate MOSFETs based on these TMD materials. Considering different gate insulators and TMD channels, we also account for the effects caused by the dielectric environment (substrate and gate insulators, and metal–gate contact) on the transport properties of the 2D channel and on the transfer characteristics of the devices. In all cases, the saturation velocity at high fields and the on-current and transconductance of the devices are significantly depressed by these ’dielectric environment’ effects. In particular, accounting fully for the presence of the dielectrics, in the double-gate nMOS device with MoS2 as the channel, the Ion calculated is $$\approx$$ 380 $$\upmu$$ A/ $$\upmu$$ m for the more realistic gate stack of HfO2/MoS2/SiO2, which is in the borderline of fulfilling the demands of the International Technology Roadmap for Semiconductors (ITRS) and the International Roadmap for Devices and Systems (IRDS) for low power applications. However, in the double-gate pMOS device with WSe2 as the channel, the on-current calculated is $$\mathrm{\approx }$$ 800  $$\upmu$$ A/ $$\upmu$$ m for the HfO2/WSe2/SiO2 system, which satisfies the ITRS requirements.

Tài liệu tham khảo

Geim, A.K., Novoselov, K.S.: In Nanoscience and technology: a collection of reviews from nature journals, pp. 11–19. World Scientific (2010) Xu, J., Chen, L., Dai, Y.-W., Cao, Q., Sun, Q.-Q., Ding, S.-J., Zhu, H., Zhang, D.W.: A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci. Adv. 3(5), e1602246 (2017) Kang, J., Cao, W., Xie, X., Sarkar, D., Liu, W., Banerjee, K.: In micro-and nanotechnology sensors, systems, and applications VI, vol. 9083 (International Society for Optics and Photonics, 2014), p. 908305 Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 1–15 (2016) Schwierz, F., Pezoldt, J., Granzner, R.: Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18), 8261–8283 (2015) Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ Ev, V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98(22), 223107 (2011) Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012) Roome, N.J., Carey, J.D.: Beyond graphene: Stable elemental monolayers of silicene and germanene. ACS Applied Materials & Interfaces 6(10), 7743–7750 (2014) Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015) Li, X., Mullen, J.T., Jin, Z., Borysenko, K.M., Nardelli, M.B., Kim, K.W.: Intrinsic electrical transport properties of monolayer silicene and MoS\(_2\) from first principles. Phys. Rev. B 87(11), 115418 (2013) Gaddemane, G., Vandenberghe, W.G., Van de Put, M.L., Chen, E., Fischetti, M.V.: Monte-Carlo study of electronic transport in non-σh-symmetric two-dimensional materials: silicene and germanene. J. Appl. Phys. 124(4), 044306 (2018) Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Le Lay, G.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16(9), 095002 (2014) Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., et al.: Isolation and characterization of few-layer black phosphorus. 2D Materials 1(2), 025001 (2014) Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5(1), 1–6 (2014) Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014) Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 8(4), 4033–4041 (2014) Cao, Y., Mishchenko, A., Yu, G., Khestanova, E., Rooney, A.P., Prestat, E., Kretinin, A.V., Blake, P., Shalom, M.B., Woods, C., et al.: Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15(8), 4914–4921 (2015) Doganov, R.A., Koenig, S.P., Yeo, Y., Watanabe, K., Taniguchi, T., Özyilmaz, B.: Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106(8), 083505 (2015) Xiang, D., Han, C., Wu, J., Zhong, S., Liu, Y., Lin, J., Zhang, X.-A., Hu, W.P., Özyilmaz, B., Neto, A.C., et al.: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6(1), 1–8 (2015) Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., et al.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Materials 2(1), 011001 (2014) Tayari, V., Hemsworth, N., Fakih, I., Favron, A., Gaufrès, E., Gervais, G., Martel, R., Szkopek, T.: Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6(1), 1–7 (2015) Gaddemane, G., Vandenberghe, W.G., Van de Put, M.L., Chen, S., Tiwari, S., Chen, E., Fischetti, M.V.: Theoretical studies of electronic transport in monolayer and bilayer phosphorene: a critical overview. Phys. Rev. B 98(11), 115416 (2018) Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS\(_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010) Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS\(_2\) transistors. Nat. Nanotechnol. 6(3), 147–150 (2011) Larentis, S., Fallahazad, B., Tutuc, E.: Field-effect transistors and intrinsic mobility in ultra-thin MoSe\(_2\) layersb. Appl. Phys. Lett. 101(22), 223104 (2012) Gaddemane, G., Gopalan, S., Van de Put, M.L., Fischetti, M.V.: Limitations of ab initio methods to predict the electronic-transport properties of two-dimensional semiconductors: the computational example of 2H-phase transition metal dichalcogenides. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01526-1 Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS\(_2\). Nano Lett. 10(4), 1271–1275 (2010) Ellis, J.K., Lucero, M.J., Scuseria, G.E.: The indirect to direct band gap transition in multilayered MoS\(_2\) as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99(26), 261908 (2011) Zhang, F., Appenzeller, J.: Tunability of short-channel effects in MoS\(_2\) field-effect devices. Nano Lett. 15(1), 301–306 (2015) Chuang, H.-J., Tan, X., Ghimire, N.J., Perera, M.M., Chamlagain, B., Cheng, M.M.-C., Yan, J., Mandrus, D., Tomanek, D., Zhou, Z.: High mobility WSe\(_2\) p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14(6), 3594–3601 (2014) Liu, W., Kang, J., Sarkar, D., Khatami, Y., Jena, D., Banerjee, K.: Role of metal contacts in designing high-performance monolayer n-type WSe\(_2\) field effect transistors. Nano Lett. 13(5), 1983–1990 (2013) Movva, H.C.P., Rai, A., Kang, S., Kim, K., Fallahazad, B., Taniguchi, T., Watanabe, K., Tutuc, E., Banerjee, S.K.: High-Mobility Holes in Dual-Gated WSe\(_2\) Field-Effect Transistors. ACS Nano 10(9), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611 Kang, J., Liu, W., Sarkar, D., Jena, D., Banerjee, K.: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4(3), 031005 (2014) Pilotto, A., Khakbaz, P., Palestri, P., Esseni, D.: Semi-classical transport in MoS\(_2\) and MoS\(_2\) transistors by a Monte Carlo approach. Solid-State Electron. 192, 108295 (2022) Gopalan, S., Van de Put, M.L., Gaddemane, G., Fischetti, M.V.: Theoretical study of electronic transport in two-dimensional transition metal dichalcogenides: effects of the dielectric environment. Phys. Rev. Appl. 18(5), 054062 (2022) Gaddemane, G., Van de Put, M.L., Vandenberghe, W.G., Chen, E., Fischetti, M.V.: Monte Carlo analysis of Phosphorene nanotransistors. J. Comput. Electron. 20(1), 60–69 (2021) ...Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Matt. 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502 Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865 Hamann, D.: Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88(8), 085117 (2013). https://doi.org/10.1103/PhysRevB.88.085117 This is due to issues encountered during the calculation of the electron-phonon matrix elements when accounting for spin-orbit interaction using Quantum ESPRESSO and EPW Poncé, S., Margine, E.R., Giustino, F.: Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys. Rev. B 10(97), 121201(R) (2018). https://doi.org/10.1103/PhysRevB.97.121201 Giustino, F., Cohen, M.L., Louie, S.G.: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76(16), 165,108 (2007). https://doi.org/10.1103/PhysRevB.76.165108 Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001). https://doi.org/10.1103/RevModPhys.73.515 Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2019). https://doi.org/10.1103/RevModPhys.89.015003 Giustino, F.: Erratum: electron-phonon interactions from first principles. [Rev. Mod. Phys. 89, 15003 (2017)]. Rev. Mod. Phys. 91(1), 019901 (2019). https://doi.org/10.1103/RevModPhys.91.019901 Van de Put, M. L., Gaddemane, G., Gopalan, S., Fischetti, M. V.: In 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, 2020), pp. 281–284 Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645 (1983) Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988) Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988). https://doi.org/10.1201/9780367806934 Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Katsnelson, M.I., Eaves, L., Morozov, S.V., Mayorov, A.S., Peres, N.M., et al.: Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12(3), 1707–1710 (2012). https://doi.org/10.1021/nl3002205 Lee, G.-H., Yu, Y.-J., Lee, C., Dean, C., Shepard, K.L., Kim, P., Hone, J.: Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99(24), 243,114 (2011). https://doi.org/10.1063/1.3662043 Nagy, D., Indalecio, G., Garcia-Loureiro, A.J., Elmessary, M.A., Kalna, K., Seoane, N.: FinFET versus gate-all-around nanowire FET: performance, scaling, and variability. IEEE J. Electron Devices Soc. 6, 332–340 (2018)