Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry
Tóm tắt
A program for Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry, also known as field asymmetric ion mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS), has been developed. Simulations are based on elastic collisions between the ions and the gas particles, and take into account the effects of flow dynamics and asymmetric electric fields. Using this program, the separation and diffusion of the ions moving in a planar DMS filtration gap are demonstrated. Ion focusing in a cylindrical filtration gap is also confirmed. A characteristic compensation voltage is found to provide insight for understanding separation in non-linear ion mobility spectrometry. The simulation program is used to study the characteristics of non-linear ion mobility spectrometry, the effect of the carrier gas flow, and the dependence of the compensation voltage and nonlinear mobility coefficient (α) on the applied asymmetric electric field.
Tài liệu tham khảo
Eiceman GA, Karpas Z (2005) Ion Mobility Spectrometry. CRC, Taylor & Francies, Boca Raton
Committee on Assessment of Security Technologies for Transportation National Materials Advisory Board, NRC, (2004) "Opportunities to improve airport passenger screening with mass spectrometry." http://www.nas.edu/nmab
Buryakov IA, Krylov EV, Nazarov EG, Rasulev UKh (1993) Int J Mass Spectrom Ion Process 128:143–148
Purves RW, Guevremont R, Day S, Pipich CW, Matyjaszczyk MS (1998) Rev. Sci. Instrum. 69:4094
Miller RA, Eiceman GA, Nazarov EG, King AT (2000) Sensor and Actuators B. Chemical 67:300
Guevremont R, Purves RW (1999) Rev. Sci. Instrum. 70:1370
Nazarov EG, Miller RA, Eiceman GA, Stone JA (2006) Anal. Chem. 78:4553
Guevremont R, Barnett DA, Purves RW (2001) J. Chem. Phys. 14:10270
Nazarov EG, Miller RA, Coy SL, Krylov E, Kryuchkov SI (2006) ISIMS Proceedings
Shvartsburg AA, Tang K, Smith RDJ (2004) Am. Soc. Mass. Spectrom. 15:1487–1498
Shvartsburg AA, Li F, Tang K, Smith RDJ (2006) Anal. Chem. 78:3706
Dahl DA (2000) Int. J. Mass Spectrom. 200:3–25
Xu J, Whitten WB (2008) Int. J. Ion Mobil. Spec. 11:13–17
Appelhans AD, Dahl DA (2002) Int. J. Mass Spectrom. 216:269
Dahl DA, McJunkin TR, Scott JR (2007) Int. J. Mass Spectrom. 266:156
Ding L, Sudakov M, Kumashiro S (2002) Int. J. Mass Spectrom. 221:117
Shvartsburg AA, Tang K, Smith RDJ (2005) Am. Soc. Mass Spectrom. 156:1447–1455
Schlichting H (1979) Boundary-Layer Theory. McGraw-Hill, New York, pp 185–187 241
Appelhans AD, Dahl DA (2005) Int. J. Mass Spectrom. 244:1
Johnsen R, Tosh R, Viehland LA (1990) J Chem Phys 92:7264