Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry

International Journal for Ion Mobility Spectrometry - Tập 12 - Trang 149-156 - 2009
Jun Xu1, Yuan Liu2
1Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, USA

Tóm tắt

A program for Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry, also known as field asymmetric ion mobility spectrometry (FAIMS) or differential mobility spectrometry (DMS), has been developed. Simulations are based on elastic collisions between the ions and the gas particles, and take into account the effects of flow dynamics and asymmetric electric fields. Using this program, the separation and diffusion of the ions moving in a planar DMS filtration gap are demonstrated. Ion focusing in a cylindrical filtration gap is also confirmed. A characteristic compensation voltage is found to provide insight for understanding separation in non-linear ion mobility spectrometry. The simulation program is used to study the characteristics of non-linear ion mobility spectrometry, the effect of the carrier gas flow, and the dependence of the compensation voltage and nonlinear mobility coefficient (α) on the applied asymmetric electric field.

Tài liệu tham khảo

Eiceman GA, Karpas Z (2005) Ion Mobility Spectrometry. CRC, Taylor & Francies, Boca Raton Committee on Assessment of Security Technologies for Transportation National Materials Advisory Board, NRC, (2004) "Opportunities to improve airport passenger screening with mass spectrometry." http://www.nas.edu/nmab Buryakov IA, Krylov EV, Nazarov EG, Rasulev UKh (1993) Int J Mass Spectrom Ion Process 128:143–148 Purves RW, Guevremont R, Day S, Pipich CW, Matyjaszczyk MS (1998) Rev. Sci. Instrum. 69:4094 Miller RA, Eiceman GA, Nazarov EG, King AT (2000) Sensor and Actuators B. Chemical 67:300 Guevremont R, Purves RW (1999) Rev. Sci. Instrum. 70:1370 Nazarov EG, Miller RA, Eiceman GA, Stone JA (2006) Anal. Chem. 78:4553 Guevremont R, Barnett DA, Purves RW (2001) J. Chem. Phys. 14:10270 Nazarov EG, Miller RA, Coy SL, Krylov E, Kryuchkov SI (2006) ISIMS Proceedings Shvartsburg AA, Tang K, Smith RDJ (2004) Am. Soc. Mass. Spectrom. 15:1487–1498 Shvartsburg AA, Li F, Tang K, Smith RDJ (2006) Anal. Chem. 78:3706 Dahl DA (2000) Int. J. Mass Spectrom. 200:3–25 Xu J, Whitten WB (2008) Int. J. Ion Mobil. Spec. 11:13–17 Appelhans AD, Dahl DA (2002) Int. J. Mass Spectrom. 216:269 Dahl DA, McJunkin TR, Scott JR (2007) Int. J. Mass Spectrom. 266:156 Ding L, Sudakov M, Kumashiro S (2002) Int. J. Mass Spectrom. 221:117 Shvartsburg AA, Tang K, Smith RDJ (2005) Am. Soc. Mass Spectrom. 156:1447–1455 Schlichting H (1979) Boundary-Layer Theory. McGraw-Hill, New York, pp 185–187 241 Appelhans AD, Dahl DA (2005) Int. J. Mass Spectrom. 244:1 Johnsen R, Tosh R, Viehland LA (1990) J Chem Phys 92:7264