Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes

Springer Science and Business Media LLC - Tập 13 Số 4 - Trang 327-344 - 2007
Jérémy Poirot1, Peter Tankov2
1INRIA, Rocquencourt, France
2Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 7, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Asmussen S., Rosiński J. (2001). Approximations of small jumps of Lévy processes with a view towards simulation. Journal of Applied. Probability 38, 482–493

Boyarchenko S., Levendorskiĭ S. (2002). Non-Gaussian Merton-Black-Scholes theory. River Edge, NJ, World Scientific

Carr P., Geman H., Madan D., Yor M. (2002). The fine structure of asset returns: An empirical investigation. Journal of Business 75, 305–332

Carr P., Madan D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance 2: 61–73

Chambers J., Mallows C., Stuck B. (1976). A method of simulating stable random variables. Journal of American Statistical Assiciation 71, 340–344

Cont, R., Bouchaud, J.-P., & Potters, M. (1997). Scaling in financial data: Stable laws and beyond. In: B. Dubrulle, F. Graner, & D. Sornette (Eds.), Scale invariance and beyond. Berlin: Springer.

Cont R., Tankov P. (2004). Financial modelling with jump processes. Boca Raton, FL, Chapman & Hall/CRC Press

Cont R., Voltchkova E. (2005). A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis 43, 1596–1626

Gradshetyn I., Ryzhik I. (1995). Table of integrals, series and products. San Diego, DA, Academic Press

Koponen I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E 52: 1197–1199

Madan, D. B., & Yor, M. (2005). CGMY and Meixner subordinators are absolutely continuous with respect to one sided stable subordinators. Prépublication du Laboratoire de Probabilités et Modèles Aléatoires.

Rosiński, J. (2001). Series representations of Lévy processes from the perspective of point processes. In: O. Barndorff-Nielsen, T. Mikosch, & S. Resnick (Eds.), Lévy processes—theory and applications. Boston: Birkhäuser.

Rosiński, J. (2004). Tempering stable processes. Preprint (cf. www.math.utk.edu/∼rosinski/manuscripts.html).

Sato K. (1999). Lévy processes and infinitely divisible distributions. Cambridge, UK, Cambridge University Press