Monte Carlo Model for Piezoresistivity of Hybrid Nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
2009, A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites, Compos. Sci. Technol., 69, 1486, 10.1016/j.compscitech.2008.06.018
2008, Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review, Compos. Sci. Technol., 68, 1227, 10.1016/j.compscitech.2008.01.006
2006, Carbon Nanotube/Polycarbonate Composites as Multifunctional Strain Sensors, J. Nanosci. Nanotechnol., 6, 960, 10.1166/jnn.2006.171
2011, A Carbon Nanotube/Polymer Strain Sensor With Linear and Anti-Symmetric Piezoresistivity, J. Compos. Mater., 45, 10.1177/0021998310393296
2007, Computational Study of Geometry-Dependent Resistivity Scaling in Single-Walled Carbon Nanotube Films, Phys. Rev. B, 75, 125432, 10.1103/PhysRevB.75.125432
2012, Effects of Inter-Tube Distance and Alignment on Tunnelling Resistance and Strain Sensitivity of Nanotube/Polymer Composite Films, Nanotechnology, 23, 055703, 10.1088/0957-4484/23/5/055703
2013, A Numerical Investigation on Piezoresistive Behaviour of Carbon Nanotube/Polymer Composites: Mechanism and Optimizing Principle, Nanotechnology, 24, 265704, 10.1088/0957-4484/24/26/265704
2012, A Novel Approach to Predict the Electrical Conductivity of Multifunctional Nanocomposites, Mech. Mater., 46, 129, 10.1016/j.mechmat.2011.12.006
2012, Tunneling Resistance and Its Effect on the Electrical Conductivity of Carbon Nanotube Nanocomposites, J. Appl. Phys., 111, 093726, 10.1063/1.4716010
2014, On the Mechanism of Piezoresistivity of Carbon Nanotube Polymer Composites, Polymer, 55, 4136, 10.1016/j.polymer.2014.06.024
2015, Anisotropic Electrical Conductivity of Polymer Composites With Aligned Carbon Nanotubes, Polymer, 56, 498, 10.1016/j.polymer.2014.11.038
2010, Recent Advances in Graphene Based Polymer Composites, Prog. Polym. Sci., 35, 1350, 10.1016/j.progpolymsci.2010.07.005
2013, The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites, Carbon, 60, 16, 10.1016/j.carbon.2013.03.050
2014, Quantifying the Aggregation Factor in Carbon Nanotube Dispersions by Absorption Spectroscopy, J. Nanosci., 2014, 10.1155/2014/328627
2006, Re-Agglomeration of Carbon Nanotubes in Two-Part Epoxy System—Influence of the Concentration, J. Nanostruct. Polym. Nanocompos., 2, 87
2014, Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets, Materials, 7, 2501, 10.3390/ma7042501
2014, Current-Voltage Characteristics of Nanoplatelet-Based Conductive Nanocomposites, Nanoscale Res. Lett., 9, 369, 10.1186/1556-276X-9-369
2009, Geometric Percolation Thresholds of Interpenetrating Plates in Three-Dimensional Space, Phys. Rev. E, 79, 041134, 10.1103/PhysRevE.79.041134
2015, Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments, Carbon, 95, 100, 10.1016/j.carbon.2015.08.026
2013, Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material Through Graphite Nanoplate–MWCNT–Graphite Nanoplate Networking, ACS Appl. Mater. Interfaces, 5, 4712, 10.1021/am400658h
2012, Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites, Carbon, 50, 5380, 10.1016/j.carbon.2012.07.021
2014, Epoxy Composites With Carbon Nanotubes and Graphene Nanoplatelets–Dispersion and Synergy Effects, Carbon, 78, 268, 10.1016/j.carbon.2014.07.003
2008, Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet–Carbon Nanotube Filler for Epoxy Composites, Adv. Mater., 20, 4740, 10.1002/adma.200800401
2013, Carbon Nanotube–Graphene Nanoplatelet Hybrids as High-Performance Multifunctional Reinforcements in Epoxy Composites, Compos. Sci. Technol., 74, 221, 10.1016/j.compscitech.2012.11.015
2013, Synergistic Electrical and Thermal Transport Properties of Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets, Carbon, 64, 111, 10.1016/j.carbon.2013.07.042
2012, Electrical Conductivity of Synergistically Hybridized Nanocomposites Based on Graphite Nanoplatelets and Carbon Nanotubes, Nanotechnology, 23, 405202, 10.1088/0957-4484/23/40/405202
2014, A Numerical Study on Electrical Percolation of Polymer-Matrix Composites With Hybrid Fillers of Carbon Nanotubes and Carbon Black, J. Nanomater., 2014, 10.1155/2014/614797
2006, Statistical Characterization of Single-Wall Carbon Nanotube Length Distribution, Nanotechnology, 17, 634, 10.1088/0957-4484/17/3/003
2015, A 2D Percolation-Based Model for Characterizing the Piezoresistivity of Carbon Nanotube-Based Films, J. Mater. Sci., 50, 2973, 10.1007/s10853-015-8862-y
2010, A 2D Elliptical Model of Random Packing for Aggregates in Concrete, J. Wuhan Univ. Technol.: Mater. Sci. Ed., 25, 717, 10.1007/s11595-010-0078-z
2007, Modeling Percolation in High-Aspect-Ratio Fiber Systems. I. Soft-Core Versus Hard-Core Models, Phys. Rev. E, 75, 041120, 10.1103/PhysRevE.75.041120
1963, Electric Tunnel Effect Between Dissimilar Electrodes Separated by a Thin Insulating Film, J. Appl. Phys., 34, 2581, 10.1063/1.1729774
1990, Computing the Block Triangular Form of a Sparse Matrix, ACM Trans. Math. Software (TOMS), 16, 303, 10.1145/98267.98287
2010, Efficient Methods for Large Resistor Networks, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 29, 28, 10.1109/TCAD.2009.2034402
2012, Multi-Scale Numerical Simulations on Piezoresistivity of CNT/Polymer Nanocomposites, Nanoscale Res. Lett., 7, 402, 10.1186/1556-276X-7-402
2009, Graphene Supermarket Material Data Sheet