Monstrous moonshine and monstrous Lie superalgebras

Richard Borcherds1
1Department of pure mathematics and mathematical statistics, Cambridge, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexander, D., Cummins, C., McKay, J., Simons, C.: Completely replicable functions. (Preprint)

Atiyah, M.F.: K-theory. New York Amsterdam: Benjamin 1967

Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the monster. Proc. Natl. Acad. Sci. USA83, 3068?3071 (1986)

Borcherds, R.E.: Generalized Kac-Moody algebras. J. Algebra115, 501?512 (1988)

Borcherds, R.E.: Central extensions of generalized Kac-Moody algebras. J. Algebra140, 330?335 (1991)

Borcherds, R.E.: Lattices like the Leech lattice. J. Algebra130 (No. 1), 219?234 (1990)

Borcherds, R.E., Conway, J.H., Queen, L., Sloane, N.J.A.: A monster Lie algebra? Adv. Math.53, 75?79 (1984); this paper is reprinted as Chap. 30 of [12]

Borcherds, R.E.: The monster Lie algebra. Adv. Math.83, No. 1 (1990)

Borcherds, R.E.: Vertex algebras (to appear)

Cartan, H., Eilenberg, S.: Homological Algebra Princeton: Princeton University Press 1956

Conway, J.H.: The automorphism group of the 26 dimensional even Lorentzian lattice. J. Algebra80, 159?163 (1983); this paper is reprinted as Chap. 27 of [12]

Conway, J.H., Sloane, N.J.A.: Sphere packings lattices and groups (Grundlehren de Math. Wiss., vol. 290) Berlin Heidelberg New York Springer 1988

Conway, J.H., Norton, S.: Monstrous moonshine. Bull. Lond. Math. Soc.11, 308?339 (1979)

Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford: Clarendon Press 1985

Frenkel, I.B.: Representations of Kac-Moody algebras and dual resonance models. In: Flato, et al. (eds.) Applications of group theory in theoretical physics. (Lect. Appl. Math., vol. 21, pp. 325?353) Providence, RI: Am. Math. Soc. 1985

Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Boston, MA Academic Press 1988

Frenkel, I.B., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess monster with the modular functionJ as character. Proc. Natl. Acad. Sci. USA81, 3256?3260 (1984)

Frenkel, I.B., Huang, Y-Z., Lepowsky, J.: On axiomatic formulations of vertex operator algebras and modules. (Preprint)

Frenkel, I.B., Garland, H., Zuckerman, G.: Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA83, 8442?8446 (1986)

Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37?76 (1976)

Goddard, P., Thorn, C.B., Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett. B40 (No. 2), 235?238 (1972)

Gunning, R.C.: Lectures on modular forms. (Ann. Math. Stud) Princeton: Princeton University Press 1962

Kac, V.G.: Infinite dimensional Lie algebras, third ed. Cambridge: Cambridge University Press 1990; (the first and second editions (Basel: Birkh�user 1983, and C.U.P. 1985) do not contain the material on generalized Kac-Moody algebras that we need.)

Kac, V.G., Moody, R.V., Wakimoto, M.: OnE 10. (Preprint)

Koike, M.: On Replication Formula and Hecke Operators. Nagoya University (Preprint)

Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329?387 (1961)

Mahler, K.: On a class of non-linear functional equations connected with modular functions. J. Aust. Math. Soc.22A, 65?118 (1976)

Norton, S.P.: More on moonshine, Computational group theory, pp. 185?195. London: Academic Press 1984

Norton, S.P.: Generalized Moonshine. (Proc. Symp. Pure Math., vol. 47 pp. 208?209) Providence, RI: Am. Math. Soc. 1987

Serre, J.P.: A course in arithmetic. (Grad. Texts Math., vol. 7) Berlin Heidelberg New York: Springer 1973

Thompson, J.G.: A finiteness theorem for subgroups of PSL(2,R) which are commensurable with PSL(2,Z). (Proc. Symp. Pure Math., vol. 37, pp. 533?555) Providence, RI: Am. Math. Soc. 1979