Monstrous moonshine and monstrous Lie superalgebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexander, D., Cummins, C., McKay, J., Simons, C.: Completely replicable functions. (Preprint)
Atiyah, M.F.: K-theory. New York Amsterdam: Benjamin 1967
Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the monster. Proc. Natl. Acad. Sci. USA83, 3068?3071 (1986)
Borcherds, R.E.: Central extensions of generalized Kac-Moody algebras. J. Algebra140, 330?335 (1991)
Borcherds, R.E., Conway, J.H., Queen, L., Sloane, N.J.A.: A monster Lie algebra? Adv. Math.53, 75?79 (1984); this paper is reprinted as Chap. 30 of [12]
Borcherds, R.E.: Vertex algebras (to appear)
Cartan, H., Eilenberg, S.: Homological Algebra Princeton: Princeton University Press 1956
Conway, J.H.: The automorphism group of the 26 dimensional even Lorentzian lattice. J. Algebra80, 159?163 (1983); this paper is reprinted as Chap. 27 of [12]
Conway, J.H., Sloane, N.J.A.: Sphere packings lattices and groups (Grundlehren de Math. Wiss., vol. 290) Berlin Heidelberg New York Springer 1988
Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford: Clarendon Press 1985
Frenkel, I.B.: Representations of Kac-Moody algebras and dual resonance models. In: Flato, et al. (eds.) Applications of group theory in theoretical physics. (Lect. Appl. Math., vol. 21, pp. 325?353) Providence, RI: Am. Math. Soc. 1985
Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Boston, MA Academic Press 1988
Frenkel, I.B., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess monster with the modular functionJ as character. Proc. Natl. Acad. Sci. USA81, 3256?3260 (1984)
Frenkel, I.B., Huang, Y-Z., Lepowsky, J.: On axiomatic formulations of vertex operator algebras and modules. (Preprint)
Frenkel, I.B., Garland, H., Zuckerman, G.: Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA83, 8442?8446 (1986)
Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37?76 (1976)
Goddard, P., Thorn, C.B., Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett. B40 (No. 2), 235?238 (1972)
Gunning, R.C.: Lectures on modular forms. (Ann. Math. Stud) Princeton: Princeton University Press 1962
Kac, V.G.: Infinite dimensional Lie algebras, third ed. Cambridge: Cambridge University Press 1990; (the first and second editions (Basel: Birkh�user 1983, and C.U.P. 1985) do not contain the material on generalized Kac-Moody algebras that we need.)
Kac, V.G., Moody, R.V., Wakimoto, M.: OnE 10. (Preprint)
Koike, M.: On Replication Formula and Hecke Operators. Nagoya University (Preprint)
Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329?387 (1961)
Mahler, K.: On a class of non-linear functional equations connected with modular functions. J. Aust. Math. Soc.22A, 65?118 (1976)
Norton, S.P.: More on moonshine, Computational group theory, pp. 185?195. London: Academic Press 1984
Norton, S.P.: Generalized Moonshine. (Proc. Symp. Pure Math., vol. 47 pp. 208?209) Providence, RI: Am. Math. Soc. 1987
Serre, J.P.: A course in arithmetic. (Grad. Texts Math., vol. 7) Berlin Heidelberg New York: Springer 1973
Thompson, J.G.: A finiteness theorem for subgroups of PSL(2,R) which are commensurable with PSL(2,Z). (Proc. Symp. Pure Math., vol. 37, pp. 533?555) Providence, RI: Am. Math. Soc. 1979