Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow

Springer Science and Business Media LLC - Tập 2019 - Trang 1-16 - 2019
Abimbola Abolarinwa1, Olukayode Adebimpe1, Emmanuel A. Bakare2
1Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
2Department of Mathematics, Federal University of Oye, Ekiti State, Nigeria, Oye-Ekiti, Nigeria

Tóm tắt

Let $\Delta _{p,\phi }$ be the weighted p-Laplacian defined on a smooth metric measure space. We study the evolution and monotonicity formulas for the first eigenvalue, $\lambda _{1}=\lambda (\Delta _{p,\phi })$ , of $\Delta _{p,\phi }$ under the Ricci-harmonic flow. We derive some monotonic quantities involving the first eigenvalue, and as a consequence, this shows that $\lambda _{1}$ is monotonically nondecreasing and almost everywhere differentiable along the flow existence.

Tài liệu tham khảo

Abolarinwa, A.: Evolution and monotonicity of the first eigenvalue of p-Laplacian under the Ricci-harmonic flow. J. Appl. Anal. 21(2), 147–160 (2015) Abolarinwa, A.: Eigenvalues of weighted-Laplacian under the extended Ricci flow. Adv. Geom. (2018). https://doi.org/10.1515/advgeom-2018-0022. arXiv:1604.05884v1 Abolarinwa, A., Edeki, S.O., Ehigie, J.: On the spectrum of the weighted p-Laplacian under the Ricci-harmonic flow. Submitted Abolarinwa, A., Mao, J.: The first eigenvalue of the p-Laplacian on time dependent Riemannian metrics (2016). arXiv:1605.01882 [math.DG] Azami, S.: Monotonicity of eigenvalues of Witten–Laplace operator along the Ricci–Bourguignon flow. AIMS Math. 2(2), 230–243 (2017) Azami, S.: First eigenvalues of geometric operator under the Ricci–Bourguignon flow. J. Indones. Math. Soc. 2(1), 51–61 (2018) Cao, X.: Eigenvalues of \(( - \Delta + \frac{R}{2} )\) on manifolds with nonnegative curvature operator. Math. Ann. 337(2), 435–442 (2007) Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136(11), 4075–4078 (2008) Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifold. Am. J. Math. 86, 109–160 (1964) Fang, S-W., Xu, H., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China Math. 58, 1737–1744 (2015) Fang, S., Yang, F.: First eigenvalues of geometric operators under the Yamabe flow. Bull. Korean Math. Soc. 53, 1113–1122 (2016) Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 253–306 (1982) Kato, T.: Perturbation Theory for Linear Operator. Springer, Berlin (1984) Kotschwar, B., Ni, L.: Gradient estimate for p-harmonic functions, 1/H flow and an entropy formula. Ann. Sci. Éc. Norm. Supér. 42(4), 1–36 (2009) Li, J-F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338(4), 927–946 (2007) Li, J-F.: Monotonicity formulae under rescaled Ricci flow (2007). arXiv:0710.5328v3, preprint, (2007) Li, Y.: Eigenvalues and entropies under the harmonic-Ricci flow. Pac. J. Math. 267(1), 141–184 (2014) List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008) Mukherjea, A., Pothoven, K.: Real and functional analysis Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. 4(45), 101–142 (2012) Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 Wang, L.F.: Eigenvalue estimate for the weighted p-Laplacian. Ann. Math. 191, 539–550 (2012) Wang, Y-Z., Li, H-Q.: Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Differ. Geom. Appl. 45, 23–42 (2016) Wu, J., Wang, E-M., Zheng, Y.: First eigenvalue of p-Laplace operator along the Ricci flow. Ann. Glob. Anal. Geom. 38(1), 27–55 (2010) Wu, J.Y.: First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow. Acta Math. Sin. 27, 1591–1598 (2011) Zeng, F., He, Q., Chen, B.: Eigenvalues and entropies under the harmonic-Ricci flow. Pac. J. Math. 296(1), 1–20 (2018)