Monotonicity criteria for difference schemes designed for hyperbolic equations

А. С. Холодов1, Yaroslav Kholodov2
1Institute for Computer-Aided Design, Russian Academy of Sciences, Vtoraya Brestskaya ul. 19/18, Moscow, 123056, Russia
2Institute for Computer Aided Design, Russian Academy of Sciences, Moscow, Russia#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. von Neuman and R. D. Richtmyer, “A Method for Numerical Calculation of Hydrodynamic Shocks,” J. Appl. Phys. 21(1), 232–237 (1950).

A. A. Samarskii, “On the Regularization of Difference Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 7, 62–93 (1967).

L. A. Chudov, Doctoral Dissertation in Mathematics and Physics (Inst. Problem Mekh., Akad. Nauk SSSR, Moscow, 1967).

V. P. Kolgan, “Application of Smoothing Operators in High-Order Accurate Difference Schemes,” Zh. Vychisl. Mat. Mat. Fiz. 18, 1340–1345 (1978).

K. O. Friedrichs and D. H. Hyers, “Symmetric Hyperbolic Linear Differential Equations,” Commun. Pure Appl. Math. 7, 345–392 (1954).

R. Courant, E. Isaacson, and M. Rees, “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences,” Commun. Pure Appl. Math. 5, 243–254 (1952).

S. K. Godunov, “Finite-Difference Method for Numerical Calculation of Discontinuous Solutions to Fluid Dynamics Equations,” Mat. Sb. 47(89) (3), 271–306 (1959).

P. D. Lax, “Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computations,” Commun. Pure Appl. Math. 7, 159–193 (1954).

R. P. Fedorenko, “Application of High-Order Accurate Difference Schemes to the Numerical Solution of Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 1122–1128 (1962).

I. B. Petrov and A. S. Kholodov, “On the Regularization of Discontinuous Numerical Solutions to Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 24, 1172–1188 (1984).

I. P. Boris and D. L. Book, “Flux-Corrected Transport I: SHASTA, a Fluid Transport Algorithm That Works,” J. Comput. Phys. 11, 38–69 (1973).

A. I. Zhmakin and A. A. Fursenko, “A Monotone Shock-Capturing Difference Scheme,” Zh. Vychisl. Mat. Mat. Fiz. 20, 1021–1031 (1980).

A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49, 357–393 (1987).

A. S. Kholodov, “Grid-Characteristic Numerical Methods for Multidimensional Problems in Continuum Mechanics,” in Problems in Cybernetics (Nauchn. sovet po kompleksnoi probleme “Kibernetika,” Akad. Nauk SSSR, Moscow, 1987), Vol. 15, pp. 140–163 [in Russian].

A. S. Kholodov, “Difference Schemes with Positive Approximation for Multidimensional Hyperbolic Equation Systems on Irregular Grids,” in Rational Numerical Simulation in Nonlinear Mechanics (Nauka, Moscow, 1990), pp. 49–62 [in Russian].

B. Van Leer, “Towards the Ultimate Conservative Difference Scheme II: Monotonicity and Conservation Combined in a Second-Order Scheme,” J. Comput. Phys. 14, 361–370 (1974).

Ya. A. Kholodov, A Monotone High-Order Accuracy Scheme for Hyperbolic CFD Problems, in APS 53rd Annual Meeting of the Division of Fluid Dynamics (Washington, DC, 2000).

A. S. Kholodov, “On the Construction of Difference Schemes with Positive Approximation for Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 18, 1476–1492 (1978).

A. S. Kholodov, “On the Construction of High Order Accurate Difference Schemes for Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 20, 1601–1620 (1980).

K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian].

K. M. Magomedov and A. S. Kholodov, “On the Construction of Difference Schemes for Hyperbolic Equations Based on Characteristic Relations,” Zh. Vychisl. Mat. Mat. Fiz. 9, 373–386 (1969).

V. V. Rusanov, “Third-Order Accurate Shock-Capturing Schemes for Computing Discontinuous Solutions,” Dokl. Akad. Nauk SSSR 180, 1303–1305 (1968).

Yu. I. Shokin and N. N. Yanenko, Method of Differential Approximation: Application to Gas Dynamics (Nauka, Novosibirsk, 1985) [in Russian].

P. D. Lax and B. Wendroff, “System of Conservation Laws,” Commun. Pure Appl. Math. 13, 217–237 (1960).

R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering,” AIAA Paper, No. 69–354 (1969).

R. F. Warming and R. M. Beam, “Upwind Second-Order Difference Schemes and Applications in Unsteady Aerodynamic Flow,” in Proceedings of AIAA 2nd Computational Fluid Dynamics Conference (Hartford, Connecticut, 1975), p. 17.

V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of the Cabaret Scheme,” Mat. Model. 10(12), 107–123 (1998).

A. I. Tolstykh, Compact Difference Schemes and Their Application to Aerohydrodynamics Problems (Nauka, Moscow, 1990) [in Russian].

R. Courant and P. Lax, “On Nonlinear Partial Differential Equations with Two Independent Variables,” Commun. Pure Appl. Math. 2, 255–273 (1949).

V. G. Grudnitskii and Yu. A. Prokhorchuk, “A Method for Constructing Difference Schemes of Any Order of Accuracy for Partial Differential Equations,” Dokl. Akad. Nauk SSSR 234, 1249–1252 (1977).

O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “Splitting Method for Investigation of Stratified Fluid Flows with Free Surface,” Zh. Vychisl. Mat. Mat. Fiz. 27, 594–609 (1987).

O. V. Vorob’ev and Ya. A. Kholodov, “A Method for Numerical Integration of One-Dimensional Gas Dynamics Problems,” Mat. Model. 8(1), 77–92 (1996).

N. N. Anuchina, “Some Difference Schemes for Hyperbolic Systems,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR, No. 74, 5–15 (1966).

R. F. Warming, P. Kutler, and H. Lomax, “Second-and Third-Order Noncentered Difference Schemes for Nonlinear Hyperbolic Equations,” AIAA J. 11(2), 189–196 (1973).

G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1977; Springer-Verlag, New York, 1975).

A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).

A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, London, 2001).

A. S. Kholodov, Ya. A. Kholodov, E. L. Stupitskii, and A. Yu. Repin, “Numerical Modeling of the Behavior of High-Energy Plasmoid in the Upper Ionosphere,” Mat. Model. 16(8), 3–23 (2004).