Monotone Wavefronts for Partially Degenerate Reaction-Diffusion Systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Capasso V., Maddalena L.: Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981)
Chen X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)
Hadeler K.P., Lewis M.A.: Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can. Appl. Math. Q. 10, 473–499 (2002)
Jin Y., Zhao X.-Q.: Bistable waves for a class of cooperative reaction-diffusion systems. J. Biol. Dyn. 2, 196–207 (2008)
Kazmierczak B., Volpert V.: Calcium aves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion. Nonlinearity 21, 71–96 (2008)
Li B., Weinberger H.F., Lewis M.A.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)
Liang X., Yi Y., Zhao X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)
Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (Erratum: 61(2008), 137–138)
Ma S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ Equ. 171, 294–314 (2001)
Murray J.D.: Mathematical Biology, I & II, Interdisciplinary Applied Mathematics. Springer, New York (2003)
Lewis M.A., Schmitz G.: Biological invasion of an organism with separate mobile and stationary states: Modelling and analysis. Forma 11, 1–25 (1996)
Shen W.: Traveling waves in time periodic lattice differential equations. Nonl. Anal. 54, 319–339 (2003)
Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)
Smoller J.: Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften 258. Springer, New York (1994)
Thieme H.R.: Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math. 306, 94–121 (1979)
Thieme H.R., Zhao X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 195, 430–470 (2003)
Tsai J.-C.: Asymptotic stability of traveling wave fronts in the buffered bistable system. SIAM J. Math. Anal. 39, 138–159 (2007)
Tsai J.-C.: Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin. Dyn. Syst. A 21, 601–623 (2008)
Tsai J.-C., Sneyd J.: Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math. 66, 237–265 (2005)
Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, Translation of Mathematical Monographs, vol. 140. American Mathematical Society, Providence, RI (1994)
Wang Q., Zhao X.-Q.: Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment. Dyn. Contin. Discrete Impuls. Syst. A 13, 231–246 (2006)
Weinberger H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)
Weinberger H.F., Lewis M.A., Li B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)
Weng P., Zhao X.-Q.: Spreading speed and traveling waves for a multi-type SIS epidemic model. J. Differ. Equ. 229, 270–296 (2006)
Zhang F., Zhao X.-Q.: Asymptotic behavior of a reaction-diffusion model with a quiescent stage. Proc. R. Soc. Lond. Ser. A 463, 1029–1043 (2007)