Mononuclear Cu-complex embedded ordered nano-porous silica based hybrid catalyst for oxidation of benzyl alcohol
Tài liệu tham khảo
Sheldon, 2001
Mizuno, 2009
Cavani, 2009
Kholdeeva, 2014, Recent developments in liquid-phase selective oxidation using environmentally benign oxidants and mesoporous metal silicates, Catal. Sci. Technol., 4, 1869, 10.1039/C4CY00087K
Thomas, 2012
Clerici, 2013
Pagliaro, 2011, Special issue on heterogeneous catalysis for fine chemicals, Catal. Sci. Technol., 9, 1543, 10.1039/c1cy90035h
Bordoloi, 2008, Heteropoly acid-based supported ionic liquid-phase catalyst for the selective oxidation of alcohols, J. Catal., 259, 232, 10.1016/j.jcat.2008.08.010
Maity, 2009, Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water, Green Chem., 11, 554, 10.1039/b815948c
Ramesh, 2004, Spectral and catalytic studies of ruthenium(III) Schiff base complexes, Inorg. Chem. Commun., 7, 274, 10.1016/j.inoche.2003.11.020
Parmeggiani, 2012, Transition metal based catalysts in the aerobic oxidation of alcohols, Green Chem., 14, 547, 10.1039/c2gc16344f
Zhu, 2014, Selective oxidation of benzyl alcohol under solvent-free condition with gold nanoparticles encapsulated in metal-organic framework, Appl. Catal. A gen, 477, 125, 10.1016/j.apcata.2014.03.013
Mahdavi, 2012, Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn (II) 2, 2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS), J. Chem. Sci., 124, 1107, 10.1007/s12039-012-0307-4
Abdel-Rahman, 2016, Some New Nano-sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation, Catal. Lett., 146, 1373, 10.1007/s10562-016-1755-0
Putla, 2015, MnOx Nanoparticle-Dispersed CeO2 Nanocubes: A Remarkable Heteronanostructured System with Unusual Structural Characteristics and Superior Catalytic Performance, ACS Appl. Mater. Interfaces., 7, 16525, 10.1021/acsami.5b03988
Poreddy, 2015, Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air, Catal. Sci. Technol., 5, 2467, 10.1039/C4CY01622J
Chavez-Rivas, 2013, Evidence for controlled insertion of Fe ions in the framework of clinoptilolite natural zeolites, Microporous Mesoporous Mater., 167, 76, 10.1016/j.micromeso.2012.04.001
Chandrakar, 2015, Zeolite Encapsulated Metal Complexes and Their Catalytic Activities: An Overview, Int. J. Adv. Res. Chem. Sci., 2, 1
Chatterjee, 1994, First report on highly efficient alkene hydrogenation catalysed by Ni(salen) complex encapsulated in zeolite, J. Mol. Catal., 92, L235, 10.1016/0304-5102(94)00091-3
Weckhuysen, 1996, Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis, J. Phys. Chem., 100, 9456, 10.1021/jp953684j
Jacob, 1999, Oxidation of para-xylene over zeolite-encapsulated copper and manganese complexes, Appl. Catal. A gen, 182, 91, 10.1016/S0926-860X(98)00427-X
Abdel-Rahman, 2013, Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 111, 266, 10.1016/j.saa.2013.03.061
Gupta, 2008, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev., 252, 1420, 10.1016/j.ccr.2007.09.005
Abdel-Rahman, 2016, Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides, J. Photochem. Photobiol. B Biol., 162, 298, 10.1016/j.jphotobiol.2016.06.052
Jiang, 2007, Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid [bmim]PF6, Tetrahedron Lett., 48, 273, 10.1016/j.tetlet.2006.11.032
Boghaei, 2002, Synthesis, characterization and study of vanadyl tetradentate Schiff base complexes as catalyst in aerobic selective oxidation of olefins, J. Mol. Catal. A Chem., 179, 41, 10.1016/S1381-1169(01)00330-2
Kannan, 2006, Synthesis, characterization, catalytic oxidation and biological activity of ruthenium(III) Schiff base complexes derived from 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione, Polyhedron., 25, 3095, 10.1016/j.poly.2006.05.042
Cozzi, 2004, Metal–Salen Schiff base complexes in catalysis: practical aspects, Chem. Soc. Rev., 33, 410, 10.1039/B307853C
Bedioui, 1995, Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview, Coord. Chem. Rev., 144, 39, 10.1016/0010-8545(94)08000-H
Mandal, 2015, Enantioselective Epoxidation of Styrene by Manganese Chiral Schiff Base Complexes Immobilized on MCM-41, ChemPlusChem., 80, 749, 10.1002/cplu.201402446
Rayati, 2015, Sodium borohydride reduction of aldehydes catalyzed by an oxovanadium(IV) Schiff base complex encapsulated in the nanocavity of zeolite-Y, Inorg. Chem. Commun., 54, 38, 10.1016/j.inoche.2015.02.004
Mehta, 2016, Heterogeneous catalysts hold the edge over homogeneous systems: Zeolite-Y encapsulated complexes for Baeyer-Villiger oxidation of cyclohexanone, J. Mol. Catal. A Chem., 421, 178, 10.1016/j.molcata.2016.05.016
Tang, 2010, Copper-Catalyzed Intramolecular C−H Oxidation/Acylation of Formyl-N-arylformamides Leading to Indoline-2,3-diones, J. Am. Chem. Soc., 132, 8900, 10.1021/ja103426d
Wang, 2012, Copper-Catalyzed Aerobic Aliphatic C–H Oxygenation Directed by an Amidine Moiety, J. Am. Chem. Soc., 134, 11980, 10.1021/ja305833a
Liu, 2012, Room-Temperature Copper-Catalyzed Oxidation of Electron-Deficient Arenes and Heteroarenes Using Air, Chem. Angew. Chem. Int. Ed., 51, 4666, 10.1002/anie.201200750
Markó, 1999, Efficient, Ecologically Benign, Aerobic Oxidation of Alcohols, J. Org. Chem., 64, 2433, 10.1021/jo982239s
Wang, 1998, Catalytic Galactose Oxidase Models: Biomimetic Cu(II)-Phenoxyl-Radical Reactivity, Science, 279, 537, 10.1126/science.279.5350.537
P. Chaudhuri, M. Hess, U. Flörke, K. Wieghardt, From Structural Models of Galactose Oxidase to Homogeneous Catalysis: Efficient Aerobic Oxidation of Alcohols, Angew. Chem. Int. Ed. 37 (1998) 2217–2220, doi:10.1002/(SICI)1521-3773(19980904)37:16%3C2217::AID-ANIE2217%3E3.0.CO;2-D.
Ansari, 2002, TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6], Org. Lett., 4, 1507, 10.1021/ol025721c
Valodkar, 2004, Catalytic oxidation by polymer-supported copper(II)–l-valine complexes, J. Mol. Catal. A Chem., 208, 21, 10.1016/j.molcata.2003.07.001
Alizadeh, 2003, Heterogeneous catalysis in the liquid phase oxidation of alcohols by Cu(II) complexes immobilized between silicate layers of bentonite, J. Mol. Catal. A Chem., 194, 283, 10.1016/S1381-1169(02)00541-1
Bansal, 2010, Oxidation of benzyl alcohol and styrene using H2O2 catalyzed by tetraazamacrocycle complexes of Cu(II) and Ni(II) encapsulated in zeolite-Y, Appl. Catal. A Gen., 381, 8, 10.1016/j.apcata.2010.03.027
Perez, 2012, Copper-containing catalysts for solvent-free selective oxidation of benzyl alcohol, J. Mol. Catal. A Chem., 352, 45, 10.1016/j.molcata.2011.10.009
Cruz, 2016, Copper, copper oxide nanoparticles and copper complexes supported on mesoporous SBA-15 as catalysts in the selective oxidation of benzyl alcohol in aqueous phase, Microporous Mesoporous Mater., 220, 136, 10.1016/j.micromeso.2015.08.029
Wang, 2013, Highly selective oxidation of alcohols catalyzed by Cu(II)-Schiff base-SBA-15 with hydrogen peroxide in water, J. Porous Mater., 20, 277, 10.1007/s10934-012-9597-7
Zhao, 2015, A highly efficient heterogeneous aerobic alcohol oxidation catalyzed by immobilization of bipyridine copper(I) complex in MCM-41, Tetrahedron, 71, 8725, 10.1016/j.tet.2015.09.054
Hamza, 2009, Selective Oxidation of Benzyl Alcohol Over Copper Phthalocyanine Immobilized on MCM-41, Cat. lett., 128, 434, 10.1007/s10562-008-9770-4
Spasianoa, 2013, TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor, Appl. Catal. B Environ., 136, 56, 10.1016/j.apcatb.2013.01.055
Azizi, 2013, Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical, Microporous Mesoporous Mater., 167, 89, 10.1016/j.micromeso.2012.03.034
Figiel, 2009, Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds, J. Mol. Catal. A Chem., 305, 178, 10.1016/j.molcata.2009.01.002
Bansala, 2010, Oxidation of benzyl alcohol and styrene using H2O2 catalyzed by tetraazamacrocycle complexes of Cu(II) and Ni(II) encapsulated in zeolite-Y, Appl. Catal. A Gen., 381, 8, 10.1016/j.apcata.2010.03.027
Ardakani, 2017, Anchoring of Copper(II) Schiff Base Complex into Aminopropyl-Functionalised MCM-41: A Novel, Efficient and Reusable Catalyst for Selective Oxidation of Alcohols, J. Inorg. Organomet. Polym. Mater., 27, 146, 10.1007/s10904-017-0647-0
Carvalho, 1999, Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane, J. Mol. Catal. A Chem., 144, 91, 10.1016/S1381-1169(99)00031-X
Tsoncheva, 2004, Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study, J. Mol. Catal. A Chem., 209, 125, 10.1016/j.molcata.2003.08.008
Pérez, 2012, Copper-containing catalysts for solvent-free selective oxidation of benzyl alcohol, J. Mol. Catal. A Chem., 352, 45, 10.1016/j.molcata.2011.10.009
Jana, 2011, Anchoring of copper(II) complexes onto the organically modified MCM-41: Preparation, characterization and catalytic epoxidation, Appl. Catal. A Gen., 392, 225, 10.1016/j.apcata.2010.11.010
Cheng, 2020, Highly efficient Cu(ii)-pyrazoledicarboxylate heterogeneous catalysts for a base-free aerobic oxidation of benzylic alcohol to benzaldehyde with hydrogen peroxide as the oxidant, Dalton Trans., 49, 7758, 10.1039/C9DT04927D
Jadav, 2020, Tetranuclear Zn complex covalently immobilized on sulfopropylsilylated mesoporous silica: An efficient catalyst for ring opening reaction of epoxide with amine, Mol. Catal., 497, 111220, 10.1016/j.mcat.2020.111220
Pandey, 2022, Synthesis and characterization of mononuclear Zn complex, immobilized on ordered mesoporous silica and their tunable catalytic properties, Mol. Catal., 525, 112365, 10.1016/j.mcat.2022.112365
Jadav, 2022, Immobilization of a Zn4 complex on functionalized layered HUS-7: synthesis, structural investigation and catalytic activity, New. J. Chem., 46, 9418, 10.1039/D2NJ00669C
Pandey, 2022, Synthesis of novel tetranuclear Ni complex incorporated mesoporous silica for improved photocatalytic degradation of methylene blue in presence of visible light, Polyhedron, 228, 116161, 10.1016/j.poly.2022.116161
Bandyopadhyay, 2017, Mesoporous MCM-48 Immobilized with Aminopropyltriethoxysilane: A Potential Catalyst for Transesterification of Triacetin, Catal. Lett., 147, 1040, 10.1007/s10562-017-1997-5
Bandyopadhyay, 2010, MCM-48 as a support for sulfonic acid catalysts, Catal. Commun., 11, 660, 10.1016/j.catcom.2010.01.018
A.L. Spek, PLATON, An Integrated Tool for the Analysis of the Results of a single crystal structure Determination, Acta Crystallogr. Sect. A 46 (1990) c34, doi:10.1107/S0108767390099780.
Sheldrick, 2008, Short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr., 64, 112, 10.1107/S0108767307043930
Dolomanov, 2009, OLEX2: A Complete Structure Solution, Refinement and Analysis Program, J. Appl. Crystallogr., 42, 339, 10.1107/S0021889808042726
Majumdar, 2020, Syntheses, characterizations, crystal structures, DFT/TD-DFT, luminescence behaviors and cytotoxic effect of bicompartmental Zn (II)-dicyanamide Schiff base coordination polymers: An approach to apoptosis, autophagy and necrosis type classical cell death, Appl. Organomet. Chem., 34, 5269, 10.1002/aoc.5269
Majumdar, 2019, Syntheses, crystal structures and photo physical aspects of azido-bridged tetranuclear cadmium (II) complexes: DFT/TD-DFT, thermal, antibacterial and anti-biofilm properties, J. Mol. Struct., 1179, 694, 10.1016/j.molstruc.2018.11.010
Marler, 1996, Influence of the sorbate type on the XRD peak intensities of loaded MCM-41, Microporous Mater., 6, 10.1016/0927-6513(96)00016-8
Bandyopadhyay, 2005, Synthesis and Characterization of Mesoporous MCM-48 Containing TiO2 Nanoparticles, Chem. Mater., 17, 3820, 10.1021/cm0484854
Radhakrishnan, 2014, Structural and Optical Absorption Analysis of CuO Nanoparticles, Indian J. Adv, Chem. Sci., 2, 158
Kucková, 2015, Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II) Complexes, Molecules, 20, 2115, 10.3390/molecules20022115
Guan, 2014, A Copper(II) Schiff base complex immobilized onto SBA-15 silica for selective oxidation of benzyl alcohol, Transit. Met. Chem., 39, 233, 10.1007/s11243-013-9795-4
Bandyopadhyay, 2019, Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin, Reac. Kinet. Mech. Cat., 126, 169, 10.1007/s11144-018-1447-4
Tsunoji, 2017, Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates, Dalton Trans., 46, 7441, 10.1039/C7DT00698E
Hatefi-Ardakani, 2016, Efficient and selective oxidation of alcohols with tert-BuOOH catalyzed by a dioxomolybdenum(VI) Schiff base complex under organic solvent-free conditions, Res. Chem. Intermed., 42, 7223, 10.1007/s11164-016-2531-x
Liu, 2019, Bimetallic Au–Ni alloy nanoparticles in a metal–organic framework (MIL-101) as efficient heterogeneous catalysts for selective oxidation of benzyl alcohol into benzaldehyde, J. Alloys Compd., 790, 326, 10.1016/j.jallcom.2019.03.186
JamJam, 2019, Free solvent oxidation of molecular benzyl alcohol by newly synthesized AuPd/titania catalysts, Inorg. Chem. Commun., 107, 107471, 10.1016/j.inoche.2019.107471
Wang, 2013, Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts, J. Catal., 299, 10, 10.1016/j.jcat.2012.11.018