Monolayer semiconductor nanocavity lasers with ultralow thresholds

Nature - Tập 520 Số 7545 - Trang 69-72 - 2015
Sanfeng Wu1, Sonia Buckley2, John Schaibley1, Liefeng Feng1, Jiaqiang Yan3, David Mandrus3, Fariba Hatami4, Wang Yao5, Jelena Vučković2, Arka Majumdar6, Xiaodong Xu7
1Department of Physics, University of Washington, Seattle, 98195, Washington, USA
2Ginzton Laboratory, Stanford University, Stanford, 94305, California, USA
3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831, Tennessee, USA
4Department of Physics, Humboldt University, D-12489 Berlin, Germany,
5Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China
6Department of Electrical Engineering, University of Washington, Seattle, 98195, Washington, USA
7Department of Material Science and Engineering, University of Washington, Seattle, 98195, Washington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012)

Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012)

Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007)

Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

Strauf, S. & Jahnke, F. Single quantum dot nanolaser. Laser Photon. Rev. 5, 607–633 (2011)

Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photon. 5, 297–300 (2011)

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010)

Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013)

Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013)

Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotechnol. 8, 634–638 (2013)

Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014)

Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013)

Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013)

Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nature Nanotechnol. 9, 262–267 (2014)

Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotechnol. 9, 268–272 (2014)

Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotechnol. 9, 257–261 (2014)

Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotechnol. 8, 497–501 (2013)

Rivoire, K., Faraon, A. & Vuckovic, J. Gallium phosphide photonic crystal nanocavities in the visible. Appl. Phys. Lett. 93, 063103 (2008)

Chalcraft, A. R. A. et al. Mode structure of the L3 photonic crystal cavity. Appl. Phys. Lett. 90, 241117 (2007)

Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013)

Wu, S. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014)

Schwarz, S. et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities. Nano Lett. 14, 7003–7008 (2014)

Tanaka, Y., Asano, T., Akahane, Y., Song, B.-S. & Noda, S. Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes. Appl. Phys. Lett. 82, 1661–1663 (2003)

Henry, C. Theory of the linewidth of semiconductor lasers. Quantum Electron. IEEE J. 18, 259–264 (1982)

Björk, G., Karlsson, A. & Yamamoto, Y. On the linewidth of microcavity lasers. Appl. Phys. Lett. 60, 304–306 (1992)

Liu, X., Galfsky, T., Sun, Z., Xia, F. & Lin, E. Strong light-matter coupling in two-dimensional atomic crystals. Preprint at http://arxiv.org/abs/1406.4826 (2014)

Björk, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A 50, 1675–1680 (1994)