Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur

Computational and Theoretical Chemistry - Tập 1097 - Trang 40-47 - 2016
Pablo A. Denis1
1Computational Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, 11800 Montevideo, Uruguay

Tài liệu tham khảo

Wang, 2014, Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev., 43, 7067, 10.1039/C4CS00141A Terrones, 2012, The role of defects and doping in 2D graphene sheets and 1D nanoribbons, Rep. Prog. Phys., 75, 062501, 10.1088/0034-4885/75/6/062501 Wang, 2013, Boron-doped graphene: scalable and tunable p-type carrier concentration doping, J. Phys. Chem. C, 117, 23251, 10.1021/jp405169j Al-Aqtash, 2011, Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups, J. Phys. Chem. C, 115, 18500, 10.1021/jp206196k Laref, 2015, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon monolayer graphenes, Carbon, 2015, 179, 10.1016/j.carbon.2014.09.047 Lv, 2012, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Sci. Rep., 2, 586, 10.1038/srep00586 Denis, 2010, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chem. Phys. Lett., 492, 251, 10.1016/j.cplett.2010.04.038 Denis, 2011, When noncovalent interactions are stronger than covalent bonds: bilayer graphene doped with second row atoms, aluminum, silicon, phosphorus and sulfur, Chem. Phys. Lett., 508, 95, 10.1016/j.cplett.2011.04.018 Zhang, 2014, Low-temperature growth of large-area heteroatom-doped graphene film, Chem. Mater., 26, 2460, 10.1021/cm500086j Yang, 2012, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634, 10.1002/adfm.201200186 Rao, 2012, Synthesis of S-doped graphene by liquid precursor, Nanotechnology, 23, 275605, 10.1088/0957-4484/23/27/275605 Wang, 2014, Thiophene–sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties, Nanoscale, 6, 7281, 10.1039/c3nr05061k Poh, 2013, Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas, ACS Nano, 7, 5262, 10.1021/nn401296b Dai, 2009, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study, Appl. Phys. Lett., 95, 232105, 10.1063/1.3272008 Gueorguiev, 2011, Intercalation of P atoms in Fullerene-like CPx, Chem. Phys. Lett., 501, 400, 10.1016/j.cplett.2010.11.024 Poh, 2014, Concurrent phosphorus doping and reduction of graphene oxide, Chem. Eur. J., 20, 4284, 10.1002/chem.201304217 Niu, 2014, Phosphorus doped graphene nanosheets for room temperature NH3 sensing, New J. Chem., 38, 2269, 10.1039/c4nj00162a Gonzalez Larrude, 2015, Electronic structure and ultrafast charge transfer dynamics of phosphorous doped graphene layers on a copper substrate: a combined spectroscopic study, RSC Adv., 5, 74189, 10.1039/C5RA12799H Zhou, 2012, Direct determination of the chemical bonding of individual impurities in graphene, Phys. Rev. Lett., 109, 206803, 10.1103/PhysRevLett.109.206803 Ramasse, 2013, The bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett., 2013, 4989, 10.1021/nl304187e Zou, 2011, An ab initio study on gas sensing properties of graphene and Si-doped graphene, Eur. Phys. J. B, 81, 475, 10.1140/epjb/e2011-20225-8 Houmad, 2015, Optical conductivity enhancement and band gap opening with silicon doped graphene, Carbon, 94, 1021, 10.1016/j.carbon.2015.07.033 Jin, 2012, Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction, Nanoscale, 4, 6455, 10.1039/c2nr31858j Denis, 2014, Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms, ChemPhysChem, 15, 3994, 10.1002/cphc.201402608 Toh, 2013, Transition metal (Mn, Fe Co, Ni)-doped graphene hybrids for electrocatalysis, Chem. Asian J., 8, 1295, 10.1002/asia.201300068 Zhao, 2014, Free-standing single-atom-thick iron membranes suspended in graphene pores, Science, 343, 1228, 10.1126/science.1245273 Robertson, 2013, Dynamics of single Fe atoms in graphene vacancies, Nano Lett., 13, 1468, 10.1021/nl304495v Sofer, 2014, Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction, ACS Nano, 8, 7106, 10.1021/nn502026k Fukushima, 2011, Role of an aluminum atom on graphene for hydrogen adsorption, J. Phys. Soc. Jpn., 80, 074705, 10.1143/JPSJ.80.074705 Ao, 2008, Enhancement of CO detection in Al doped graphene, Chem. Phys. Lett. Chem. Phys. Lett., 461, 276, 10.1016/j.cplett.2008.07.039 Cruz-Silva, 2009, Electronic transport and mechanical properties of phosphorus- and phosphorus–nitrogen-doped carbon nanotubes, ACS Nano, 3, 1913, 10.1021/nn900286h Zheng, 2014, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano, 8, 5290, 10.1021/nn501434a Ma, 2014, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high performance anode material for lithium ion batteries, ACS Appl. Mater. Interf., 6, 14415, 10.1021/am503692g Paraknowitsch, 2012, Intrinsically sulfur- and nitrogen-Co-doped carbons from thiazolium salts, Chem. Eur. J., 18, 15416, 10.1002/chem.201202445 You, 2015, New approach of nitrogen and sulfur-doped graphene synthesis using dipyrrolemethane and their electrocatalytic activity for oxygen reduction in alkaline media, J. Power Sourc., 275, 73, 10.1016/j.jpowsour.2014.10.174 Norek, 2016, Copolycondensation of heterocyclic aldehydes: a general approach to sulfur and nitrogen dually-doped carbon gels, Micropor. Mesopor. Mat., 2016, 198 Feng, 2014, Graphite oxide to nitrogen and sulfur Co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs, RSC Adv., 4, 17902, 10.1039/c4ra01985g Ma, 2014, High capacity Li storage in sulfur and nitrogen dual-doped graphene networks, Carbon, 79, 310, 10.1016/j.carbon.2014.07.072 Denis, 2014, Theoretical characterization of sulfur and nitrogen dual-doped graphene, Comput. Theory. Chem., 1049, 13, 10.1016/j.comptc.2014.08.023 Denis, 2015, Structural characterization and chemical reactivity of dual doped graphene, Carbon, 87, 106, 10.1016/j.carbon.2015.01.049 Denis, 2016, Band gap opening in dual doped monolayer graphene, J. Phys. Chem. C, 120, 7103, 10.1021/acs.jpcc.5b11709 Denis, 2016, Dual doped monolayer and bilayer graphene: the case of 4p and 2p elements, Chem. Phys. Lett., 658, 152, 10.1016/j.cplett.2016.06.032 Ervasti, 2015, Silicon and silicon-nitrogen impurities in graphene: structure, energetics and effects on electronic transport, Phys. Rev. B, 92, 235412, 10.1103/PhysRevB.92.235412 She, 2016, Creation of Ge–Nx–Cy configures in carbon nanotubes: origin of enhanced electrocatalytic performance for oxygen reduction reaction, ACS Appl. Mater. Interf., 8, 10383, 10.1021/acsami.6b03260 Ullah, 2015, Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study, RSC Adv., 5, 55762, 10.1039/C5RA08061D Hussain, 2016, Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study, RSC Adv., 6, 55990, 10.1039/C6RA04782C Olaniyan, 2016, Exploring the stability and electronic structure of beryllium and sulphur Co-doped graphene: first principles study, RSC Adv., 10.1039/C6RA17640B Dion, 2004, Van der Waals density functional for general geometries, Phys. Rev. Lett., 92, 246401, 10.1103/PhysRevLett.92.246401 Zhao, 2006, New local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, J. Chem. Phys., 125, 194101, 10.1063/1.2370993 Heyd, 2004, Assessment and validation of a screened coulomb hybrid density functional, J. Chem. Phys., 120, 7274, 10.1063/1.1668634 Soler, 2002, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter, 14, 2745 Ordejon, 1996, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B, 53, R10441, 10.1103/PhysRevB.53.R10441 Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc, Wallingford CT, 2009. Hehre, 1986 Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993