Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur
Tài liệu tham khảo
Wang, 2014, Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev., 43, 7067, 10.1039/C4CS00141A
Terrones, 2012, The role of defects and doping in 2D graphene sheets and 1D nanoribbons, Rep. Prog. Phys., 75, 062501, 10.1088/0034-4885/75/6/062501
Wang, 2013, Boron-doped graphene: scalable and tunable p-type carrier concentration doping, J. Phys. Chem. C, 117, 23251, 10.1021/jp405169j
Al-Aqtash, 2011, Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups, J. Phys. Chem. C, 115, 18500, 10.1021/jp206196k
Laref, 2015, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon monolayer graphenes, Carbon, 2015, 179, 10.1016/j.carbon.2014.09.047
Lv, 2012, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Sci. Rep., 2, 586, 10.1038/srep00586
Denis, 2010, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chem. Phys. Lett., 492, 251, 10.1016/j.cplett.2010.04.038
Denis, 2011, When noncovalent interactions are stronger than covalent bonds: bilayer graphene doped with second row atoms, aluminum, silicon, phosphorus and sulfur, Chem. Phys. Lett., 508, 95, 10.1016/j.cplett.2011.04.018
Zhang, 2014, Low-temperature growth of large-area heteroatom-doped graphene film, Chem. Mater., 26, 2460, 10.1021/cm500086j
Yang, 2012, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634, 10.1002/adfm.201200186
Rao, 2012, Synthesis of S-doped graphene by liquid precursor, Nanotechnology, 23, 275605, 10.1088/0957-4484/23/27/275605
Wang, 2014, Thiophene–sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties, Nanoscale, 6, 7281, 10.1039/c3nr05061k
Poh, 2013, Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas, ACS Nano, 7, 5262, 10.1021/nn401296b
Dai, 2009, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study, Appl. Phys. Lett., 95, 232105, 10.1063/1.3272008
Gueorguiev, 2011, Intercalation of P atoms in Fullerene-like CPx, Chem. Phys. Lett., 501, 400, 10.1016/j.cplett.2010.11.024
Poh, 2014, Concurrent phosphorus doping and reduction of graphene oxide, Chem. Eur. J., 20, 4284, 10.1002/chem.201304217
Niu, 2014, Phosphorus doped graphene nanosheets for room temperature NH3 sensing, New J. Chem., 38, 2269, 10.1039/c4nj00162a
Gonzalez Larrude, 2015, Electronic structure and ultrafast charge transfer dynamics of phosphorous doped graphene layers on a copper substrate: a combined spectroscopic study, RSC Adv., 5, 74189, 10.1039/C5RA12799H
Zhou, 2012, Direct determination of the chemical bonding of individual impurities in graphene, Phys. Rev. Lett., 109, 206803, 10.1103/PhysRevLett.109.206803
Ramasse, 2013, The bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy, Nano Lett., 2013, 4989, 10.1021/nl304187e
Zou, 2011, An ab initio study on gas sensing properties of graphene and Si-doped graphene, Eur. Phys. J. B, 81, 475, 10.1140/epjb/e2011-20225-8
Houmad, 2015, Optical conductivity enhancement and band gap opening with silicon doped graphene, Carbon, 94, 1021, 10.1016/j.carbon.2015.07.033
Jin, 2012, Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction, Nanoscale, 4, 6455, 10.1039/c2nr31858j
Denis, 2014, Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms, ChemPhysChem, 15, 3994, 10.1002/cphc.201402608
Toh, 2013, Transition metal (Mn, Fe Co, Ni)-doped graphene hybrids for electrocatalysis, Chem. Asian J., 8, 1295, 10.1002/asia.201300068
Zhao, 2014, Free-standing single-atom-thick iron membranes suspended in graphene pores, Science, 343, 1228, 10.1126/science.1245273
Robertson, 2013, Dynamics of single Fe atoms in graphene vacancies, Nano Lett., 13, 1468, 10.1021/nl304495v
Sofer, 2014, Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction, ACS Nano, 8, 7106, 10.1021/nn502026k
Fukushima, 2011, Role of an aluminum atom on graphene for hydrogen adsorption, J. Phys. Soc. Jpn., 80, 074705, 10.1143/JPSJ.80.074705
Ao, 2008, Enhancement of CO detection in Al doped graphene, Chem. Phys. Lett. Chem. Phys. Lett., 461, 276, 10.1016/j.cplett.2008.07.039
Cruz-Silva, 2009, Electronic transport and mechanical properties of phosphorus- and phosphorus–nitrogen-doped carbon nanotubes, ACS Nano, 3, 1913, 10.1021/nn900286h
Zheng, 2014, Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution, ACS Nano, 8, 5290, 10.1021/nn501434a
Ma, 2014, Phosphorus and nitrogen dual-doped few-layered porous graphene: a high performance anode material for lithium ion batteries, ACS Appl. Mater. Interf., 6, 14415, 10.1021/am503692g
Paraknowitsch, 2012, Intrinsically sulfur- and nitrogen-Co-doped carbons from thiazolium salts, Chem. Eur. J., 18, 15416, 10.1002/chem.201202445
You, 2015, New approach of nitrogen and sulfur-doped graphene synthesis using dipyrrolemethane and their electrocatalytic activity for oxygen reduction in alkaline media, J. Power Sourc., 275, 73, 10.1016/j.jpowsour.2014.10.174
Norek, 2016, Copolycondensation of heterocyclic aldehydes: a general approach to sulfur and nitrogen dually-doped carbon gels, Micropor. Mesopor. Mat., 2016, 198
Feng, 2014, Graphite oxide to nitrogen and sulfur Co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs, RSC Adv., 4, 17902, 10.1039/c4ra01985g
Ma, 2014, High capacity Li storage in sulfur and nitrogen dual-doped graphene networks, Carbon, 79, 310, 10.1016/j.carbon.2014.07.072
Denis, 2014, Theoretical characterization of sulfur and nitrogen dual-doped graphene, Comput. Theory. Chem., 1049, 13, 10.1016/j.comptc.2014.08.023
Denis, 2015, Structural characterization and chemical reactivity of dual doped graphene, Carbon, 87, 106, 10.1016/j.carbon.2015.01.049
Denis, 2016, Band gap opening in dual doped monolayer graphene, J. Phys. Chem. C, 120, 7103, 10.1021/acs.jpcc.5b11709
Denis, 2016, Dual doped monolayer and bilayer graphene: the case of 4p and 2p elements, Chem. Phys. Lett., 658, 152, 10.1016/j.cplett.2016.06.032
Ervasti, 2015, Silicon and silicon-nitrogen impurities in graphene: structure, energetics and effects on electronic transport, Phys. Rev. B, 92, 235412, 10.1103/PhysRevB.92.235412
She, 2016, Creation of Ge–Nx–Cy configures in carbon nanotubes: origin of enhanced electrocatalytic performance for oxygen reduction reaction, ACS Appl. Mater. Interf., 8, 10383, 10.1021/acsami.6b03260
Ullah, 2015, Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study, RSC Adv., 5, 55762, 10.1039/C5RA08061D
Hussain, 2016, Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study, RSC Adv., 6, 55990, 10.1039/C6RA04782C
Olaniyan, 2016, Exploring the stability and electronic structure of beryllium and sulphur Co-doped graphene: first principles study, RSC Adv., 10.1039/C6RA17640B
Dion, 2004, Van der Waals density functional for general geometries, Phys. Rev. Lett., 92, 246401, 10.1103/PhysRevLett.92.246401
Zhao, 2006, New local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, J. Chem. Phys., 125, 194101, 10.1063/1.2370993
Heyd, 2004, Assessment and validation of a screened coulomb hybrid density functional, J. Chem. Phys., 120, 7274, 10.1063/1.1668634
Soler, 2002, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter, 14, 2745
Ordejon, 1996, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B, 53, R10441, 10.1103/PhysRevB.53.R10441
Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc, Wallingford CT, 2009.
Hehre, 1986
Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993