Giám sát hiệu quả điều trị trong các khối u vú

European Radiology - Tập 16 - Trang 2549-2558 - 2006
Anne A. Tardivon1, Liliane Ollivier1, Carl El Khoury1, Fabienne Thibault1
1Department of Radiology, Institut Curie, Paris, France

Tóm tắt

Mục tiêu của việc chẩn đoán hình ảnh trong và sau điều trị bổ trợ là ghi nhận và định lượng phản ứng của khối u: kích thước khối u đã được đo lường chính xác chưa? Chắc chắn rằng thông tin thú vị nhất đối với các bác sĩ ung bướu là: liệu chúng ta có thể xác định được những bệnh nhân phản ứng tốt hay không, và liệu chúng ta có thể dự đoán phản ứng bệnh lý sớm sau khi bắt đầu điều trị? Bài viết tổng quan này sẽ thảo luận về vai trò và khả năng của các phương pháp chẩn đoán hình ảnh khác nhau (chụp nhũ ảnh, siêu âm, cộng hưởng từ và chụp FDG-PET) trong việc đánh giá phản ứng điều trị này. Điều quan trọng là nhấn mạnh rằng, ở thời điểm hiện tại, thăm khám lâm sàng và chẩn đoán hình ảnh thông thường (chụp nhũ ảnh và siêu âm) là những phương pháp duy nhất được công nhận theo các tiêu chí quốc tế. Chụp cộng hưởng từ và chụp FDG-PET có triển vọng rất lớn trong việc dự đoán phản ứng sớm sau khi bắt đầu hóa trị liệu bổ trợ.

Từ khóa

#ung thư vú #điều trị bổ trợ #chẩn đoán hình ảnh #chụp nhũ ảnh #siêu âm #cộng hưởng từ #FDG-PET

Tài liệu tham khảo

Bonadonna G, Vlagussa P, Brmabilla C et al (1998) Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J Clin Oncol 16:93–100 van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L (2001) Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19:4224–4237 Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 96–102 Newman LA, Buzdar AU, Singletary SE et al (2002) A prospective trial of preoperative chemotherapy in resectable breast cancer: predictors of breast-conserving therapy feasibility. Ann Surg Oncol 9:228–234 Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888 Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E (1999) Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol 17(1):110 Tillman BGF, Orel SG, Schnall MD, Schultz DJ, Tan JE, Solin LJ (2002) Effect of breast magnetic resonance imaging with early-stage breast carcinoma. J Clin Oncol 20(16):3413–3423 Bedrosian I, Mick R, Orel SG et al (2003) Changes in the surgical management of patients with breast carcinoma based on preoperative magnetic resonance imaging. Cancer 98:468–473 Sardanelli F, Giuseppetti GM, Panizza P et al (2004) Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. Am J Roentgenol 183:1149–1157 Berg WA, Gutierrez L, Ness Aiver MS et al (2004) Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233:830–849 Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216 Ollivier L, Vanel D, Leclère J (2002) Monitoring tumour response. Cancer Imaging 3:5–6 Helvie MA, Joynt LK, Cody RL et al (1996) Locally advanced breast carcinoma : accuracy of mammography vs clinical examination in the prediction of residual disease after chemotherapy. Radiology 198:327–332 Vinnicombe SJ, MacVicar AD, Guy RL et al (1996) Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation. Radiology 198:333–340 Moskovic EC, Mansi JL, King DM et al (1993) Mammography in the assessment of response to medical treatment of large primary breast cancer. Clin Radiol 47:339–344 Huber S, Wagner M, Zuna I et al (2000) Locally advanced breast carcinoma: evaluation of mammography in the prediction of residual disease after induction chemotherapy. Anticancer Res 20:553–558 Balu-Maestro C, Chapellier C, Bleuse A et al (2002) Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits in MRI. Breast Cancer Res Treat 72:145–152 Fornage BD, Toubas O, Morel M (1987) Clinical, mammographic and sonographic determination of preoperative breast cancer size. Cancer 60:765–771 Herrada J, Iyer RB, Atkinson EN et al (1997) Relative value of physical examination, mammography, and breast sonography in evaluating the size of primary tumor and regional lymph node metastases in women receiving neoadjuvant chemotherapy for locally advanced breast carcinoma. Clin Cancer Res 3:1565–1569 Schott ZF, Roubidoux MA, Helvie MA et al (2005) Clinical and radiological assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 92:231–238 Roubidoux MA, Le Carpentier GL, Fowles JB et al (2005) Sonographic evaluation of early-stage breast cancers that undergo neoadjuvant chemotherapy. J Ultrasound Med 24:885–895 Walsh R, Kornguth PJ, Soo MS, Bentley R, Delong DM (1997) Axillary lymph nodes; mammographic, pathologic and clinical correlation. AJR 168:33–38 Feu J, Tresserra F, Fabregas R et al (1997) Metastatic breast carcinoma in axillary lymph nodes: in vitro US detection. Radiology 205:831–835 Tschammler A, Ott G, Schang T, Seelbach-Goebel B, Schwager K, Hahn D (1998) Lymphadenopathy : differentiation of benign from malignant disease - color Doppler US assessment of intranodal angioarchitecture. Radiology 208:117–123 Yang WT, Chang J, Metreweli C (2000) Patients with breast cancer : differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 215:568–573 Lernevall A (2000) Imaging of axillary lymph nodes. Act Oncol 39(3):277–281 Balu-Maestro C, Cazenave F, Marcy PY, Tran C (1996) Evaluation de la réponse tumorale à la chimiothérapie par l’IRM et l’écho Doppler couleur. J Le Sein 3:194–202 Huber S, Medl M, Helblich T et al (2000) Locally advanced breast carcinoma: computer assisted semiquantitative analysis of color Doppler ultrasonography in the evaluation of tumor response to neoadjuvant chemotherapy (work in progress). J Ultrasound Med 19:601–607 Singh S, Pradhan S, Shukla RC, Ansari MA, Kumar A (2005) Color Doppler ultrasound as an objective assessment tool for chemotherapeutic response in advanced breast cancer. Breast Cancer 12:45–51 Huber S, Helblich T, Kettenbach J, Dock W, Zuna I, Delorme S (1998) Effects of a microbubble agent on breast tumors: computer-assisted quantitative assessment with color Doppler US - Early experience. Radiology 208:485–489 Vallone P, D’Angelo R, Filice S et al (2005) Color-Doppler using contrast medium in evaluating the response to neoadjuvant treatment in patients with locally advanced breast carcinoma. Anticancer Res 25:595–599 Orel Greenstein S (2000) MR imaging of the breast. Radiol Clin North Am 38(4):899–913 Morris EA (2002) Breast cancer imaging with MRI. Radiol Clin North Am 40(3):443–466 Partbridge SC, Gibbs JE, Lu Y, Esserman LJ, Sudilovsky D, Hylton NM (2002) Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. Am J Roentgenol 179:1193–1199 Rosen EL, Blackwell KL, Baker JA et al (2003) Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. Am J Roentgenol 181:1275–1282 Thibault F, Nos C, Meunier M et al (2004) MRI for surgical planning in patients with breast cancer who undergo preoperative chemotherapy. Am J Roentgenol 183:1159–1168 Londero V, Bazzocchi M, Del Frate C et al (2004) Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy. Eur Radiol 14:1371–1379 Newman LA, Buzdar AU, Singletary SE et al (2002) A prospective trial of preoperative chemotherapy in resectable breast cancer: predictors of breast-conservation therapy feasibility. Ann Surg Oncol 9:228–234 Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kuhn T (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 7:1711–1719 Warren RML, Bobrow LG, Earl HM et al (2004) Can breast MRI help in the management of women with breast cancer treated by neoadjuvant chemotherapy? Br J Cancer 90:1349–1360 Martincich L, Montemurro F, De Rosa G et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 67–76 Cheung YC, Chen SC, Su MY et al (2003) Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 78:51–58 Partbridge SC, Gibbs JE, Lu Y et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. Am J Roentgenol 184:1774–1781 Gilles R, Guinebretière JM, Toussaint C et al (1994) Locally advanced breast cancer: contrast-enhanced subtraction MR imaging of response to preoperative chemotherapy. Radiology 191:633–638 Kuhl CK (2000) MRI of breast tumors. Eur Radiol 10:46–58 Rieber A, Zeitler H, Rosenthal H et al (1997) MRI of breast cancer: influence of chemotherapy on sensitivity. Br J Radiol 70:452–458 Wasser K, Klein SK, Fink C et al (2003) Evaluation of neoadjuvant chemotherapeutic response of breast cancer using dynamic MRI with high temporal resolution. Eur Radiol 13:80–87 Delille JP, Slanetz PJ, Yeh ED et al (2003) Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: non-invasive monitoring with functional MR imaging - pilot study. Radiology 228:63–69 El Khoury C, Servois V, Thibault F et al (2005) MR quantification of the washout changes in breast tumors under preoperative chemotherapy: feasibility and preliminary results. Am J Roentgenol 184:1499–1504 American College of Radiology Imaging Network, ACRIN 6657 trial. Website : http://www.acrin.org, current protocols section Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365 Preda A, van Vliet M, Krestin GP, Brasch RC, van Dijke CF (2006) Magnetic resonance macromolecular agents for monitoring microvessels and angiogenesis inhibition. Inv Radiol 41:325–331 Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269–275 Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo (1) H MR spectroscopy. J Magn Reson Imaging 10:159–164 Yeung DK, Yang WT, Tse GM (2002) Human breast cancer: in vivo proton MR spectroscopy in the characterization of histopathological subtypes and preliminary observations in axillary node metastases. Radiology 225:190–197 Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68:45–54 Tse GMK, Humairah Cheung S, Pang LM et al (2003) Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. Am J Roentgenol 181:1267–1272 Jagannathan NR, Kumar M, Seenu V et al (2001) Evaluation of total choline from in vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016–1022 Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1) H MR spectroscopy-a pilot study at 4 T. Radiology 233:424–431 Quon A, Gambhir SS (2005) FDG-PET and beyond : molecular cancer imaging. J Xlin Oncol 23:1664–1673 Schelling M, Avril N, Nahrig J et al (2000) Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18:1689–1695 Bassa P, Kim EE, Inoue T et al (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37:931–938 Gennari A, Donati S, Salvadori B et al (2000) Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 1:156–161 Jansson T, Westlin JE, Ahlstrom H et al (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer. A method for early therapy evaluation? J Clin Oncol 13:1470–1477 Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: Relationship to response to therapy. J Nucl Med 43:500–509 Smith IC, Welch AE, Hutcheon AW et al (2000) Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18:1676–1688 Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominated breast cancer to therapy. Acad Radiol 9:913–921 Tiling R, Linke R, Untch M et al (2001) 18F-FDG PET and 99mTc-sestamibi scintiomammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 28:711–720 Dehdashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56 Mortimer JE, Dehdashti F, Siegel BA et al (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803 Ciernik IF, Dizendorf E, Baumert BG et al (2003) Radiation treatment planning with an integrated positron emssion and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57:853–863 Giraud P, Grahek D, Montravers F et al (2001) (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49:1249–1257 Kelloff GJ, Krohn KA, Larson SM et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985