Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise

Science advances - Tập 2 Số 5 - 2016
Aurélien Mordret1, T. Dylan Mikesell1, Christopher Harig2, Bradley P. Lipovsky3,4, G. A. Prieto1
1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
2Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA
4Department of Geophysics, Stanford University, Stanford, CA 94305–2004, USA.

Tóm tắt

Researchers monitor southwest Greenland’s ice sheet mass changes by measuring seismic velocity variations in Greenland’s crust.

Từ khóa


Tài liệu tham khảo

10.1126/science.1228102

E. Hanna, F. J. Navarro, F. Pattyn, C. M. Domingues, X. Fettweis, E. R. Ivins, R. J. Nicholls, C. Ritz, B. Smith, S. Tulaczyk, P. L. Whitehouse, H. J. Zwally, Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013).

S. A. Khan, A. Aschwanden, A. A. Bjørk, J. Wahr, K. K. Kjeldsen, K. H. Kjær, Greenland ice sheet mass balance: A review. Rep. Prog. Phys. 78, 046801 (2015).

M. Tedesco, X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. E. Box, B. Wouters, Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere 7, 615–630 (2013).

R. L. Tilling, A. Ridout, A. Shepherd, D. J. Wingham, Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 8, 643–646 (2015).

J. A. Church P. U. Clark A. Cazenave J. M. Gregory S. Jevrejeva A. Levermann M. A. Merrifield G. A. Milne R. S. Nerem P. D. Nunn A. J. Payne W. T. Pfeffer D. Stammer A. S. Unnikrishnan Sea level change in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T. F. Stocker D. Qin G.-K. Plattner M. Tignor S. K. Allen J. Boschung A. Nauels Y. Xia V. Bex P. M. Midgley Eds. (Cambridge Univ. Press Cambridge 2013) pp. 1137–1216.

D. G. Vaughan J. C. Comiso I. Allison J. Carrasco G. Kaser R. Kwok P. Mote T. Murray F. Paul J. Ren E. Rignot O. Solomina K. Steffen T. Zhang Observations: Cryosphere in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T. F. Stocker D. Qin G.-K. Plattner M. Tignor S. K. Allen J. Boschung A. Nauels Y. Xia V. Bex P. M. Midgley Eds. (Cambridge Univ. Press Cambridge 2013) pp. 317–382.

10.1126/science.1235367

C. Harig, F. J. Simons, Mapping Greenland’s mass loss in space and time. Proc. Natl. Acad. Sci. U.S.A. 109, 19934–19937 (2012).

S. Abbas Khan, J. Wahr, M. Bevis, I. Velicogna, E. Kendrick, Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett. 37, L06501 (2010).

Y. Jiang, T. H. Dixon, S. Wdowinski, Accelerating uplift in the North Atlantic region as an indicator of ice loss. Nat. Geosci. 3, 404–407 (2010).

M. Bevis, J. Wahr, S. A. Khan, F. Bo Madsen, A. Brown, M. Willis, E. Kendrick, P. Knudsen, J. E. Box, T. van Dam, D. J. Caccamise II, B. Johns, T. Nylen, R. Abbott, S. White, J. Miner, R. Forsberg, H. Zhou, J. Wang, T. Wilson, D. Bromwich, O. Francis, Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc. Natl. Acad. Sci. U.S.A. 109, 11944–11948 (2012).

H. Machguth, M. MacFerrin, D. van As, J. E. Box, C. Charalampidis, W. Colgan, R. S. Fausto, H. A. J. Meijer, E. Mosley-Thompson, R. S. W. van de Wal, Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6, 390–393 (2016).

10.1029/2006GL027797

10.1038/ngeo104

Z. Duputel, V. Ferrazzini, F. Brenguier, N. Shapiro, M. Campillo, A. Nercessian, Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007. J. Volcanol. Geotherm. Res. 184, 164–173 (2009).

A. Mordret, A. D. Jolly, Z. Duputel, N. Fournier, Monitoring of phreatic eruptions using interferometry on retrieved cross-correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. J. Volcanol. Geotherm. Res. 191, 46–59 (2010).

U. Wegler, C. Sens-Schönfelder, Fault zone monitoring with passive image interferometry. Geophys. J. Int. 168, 1029–1033 (2007).

10.1126/science.1160943

10.1126/science.1254073

N. M. Shapiro, M. Campillo, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31, L07614 (2004).

P. Gouédard, L. Stehly, F. Brenguier, M. Campillo, Y. C. de Verdière, E. Larose, L. Margerin, P. Roux, F. J. Sánchez-Sesma, N. M. Shapiro, R. L. Weaver, Cross-correlation of random fields: Mathematical approach and applications. Geophys. Prospect. 56, 375–393 (2008).

A. E. Malcolm, J. A. Scales, B. A. van Tiggelen, Extracting the Green function from diffuse, equipartitioned waves. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 015601 (2004).

P. Roux, K. G. Sabra, W. A. Kuperman, A. Roux, Ambient noise cross correlation in free space: Theoretical approach. J. Acoust. Soc. Am. 117, 79–84 (2005).

10.1121/1.3125345

Z. Zhan, V. C. Tsai, R. W. Clayton, Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophys. J. Int. 194, 1574–1581 (2013).

T. D. Mikesell, A. E. Malcolm, D. Yang, M. M. Haney, A comparison of methods to estimate seismic phase delays: Numerical examples for coda wave interferometry. Geophys. J. Int. 202, 347–360 (2015).

10.1126/science.1070015

J. F. Clinton, M. Nettles, F. Walter, K. Anderson, T. Dahl-Jensen, D. Giardini, A. Govoni, W. Hanka, S. Lasocki, W. S. Lee, D. McCormack, S. Mykkeltveit, E. Stutzmann, S. Tsuboi, Seismic network in Greenland monitors Earth and ice system. Eos Trans. Am. Geophys. Union 95, 13–14 (2014).

A. Sergeant, E. Stutzmann, A. Maggi, M. Schimmel, F. Ardhuin, M. Obrebski, Frequency-dependent noise sources in the North Atlantic Ocean. Geochem. Geophys. Geosyst. 14, 5341–5353 (2013).

10.1126/science.1088057

I. Joughin, B. E. Smith, D. E. Shean, D. Floricioiu, Brief communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere 8, 209–214 (2014).

P. Segall Earthquake and Volcano Deformation (Princeton Univ. Press Princeton NJ 2010).

V. C. Tsai, A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J. Geophys. Res. Solid Earth 116, B04404 (2011).

10.1002/2013JB010695

10.1002/2015GL064835

M. Truffer, W. D. Harrison, K. A. Echelmeyer, Glacier motion dominated by processes deep in underlying till. J. Glaciol. 46, 213–221 (2000).

N. R. Iverson, R. W. Baker, T. S. Hooyer, A ring-shear device for the study of till deformation: Tests on tills with contrasting clay contents. Quat. Sci. Rev. 16, 1057–1066 (1997).

10.1126/science.273.5280.1359

Martin H. Sadd Elasticity: Theory Applications and Numerics (Academic Press Burlington MA 2009).

K. Yamamura, O. Sano, H. Utada, Y. Takei, S. Nakao, Y. Fukao, Long-term observation of in situ seismic velocity and attenuation. J. Geophys. Res. Solid Earth 108, 2317 (2003).

10.1029/2011GL047151

G. Olivier, F. Brenguier, M. Campillo, P. Roux, N. M. Shapiro, R. Lynch, Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine. Geophys. Res. Lett. 42, 9261–9269 (2015).

M. Truffer, K. A. Echelmeyer, W. D. Harrison, Implications of till deformation on glacier dynamics. J. Glaciol. 47, 123–134 (2001).

M. S. Longuet-Higgins, A theory of the origin of microseisms. Philos. Trans. R. Soc. London Ser. A. 243, 1–35 (1950).

10.1785/0220130073

K. Hosseini obspyDMT (2015).

K. J. Seats, J. F. Lawrence, G. A. Prieto, Improved ambient noise correlation functions using Welch’s method. Geophys. J. Int. 188, 513–523 (2012).

P. Poli, H. A. Pedersen; The Polenet/Lapnet Working Group, Noise directivity and group velocity tomography in a region with small velocity contrasts: The northern Baltic shield. Geophys. J. Int. 192, 413–424 (2013).

10.1111/j.1365-246X.2011.05074.x

R. L. Weaver, C. Hadziioannou, E. Larose, M. Campillo, On the precision of noise correlation interferometry. Geophys. J. Int. 185, 1384–1392 (2011).

C. Hadziioannou, E. Larose, A. Baig, P. Roux, M. Campillo, Improving temporal resolution in ambient noise monitoring of seismic wave speed. J. Geophys. Res. Solid Earth 116, B07304 (2011).

M. Witek, S. van der Lee, T.-S. Kang, Rayleigh wave group velocity distributions for East Asia using ambient seismic noise. Geophys. Res. Lett. 41, 8045–8052 (2014).

B. Froment, M. Campillo, P. Roux, P. Gouédard, A. Verdel, R. L. Weaver, Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 75, SA85–SA93 (2010).

A. Colombi, J. Chaput, F. Brenguier, G. Hillers, P. Roux, M. Campillo, On the temporal stability of the coda of ambient noise correlations. C. R. Geosci. 346, 307–316 (2014).

P. Kumar, R. Kind, K. Priestley, T. Dahl-Jensen, Crustal structure of Iceland and Greenland from receiver function studies. J. Geophys. Res. Solid Earth 112, B03301 (2007).

M. C. Schmidt-Aursch, W. Jokat, The crustal structure of central East Greenland—II: From the Precambrian shield to the recent mid-oceanic ridges. Geophys. J. Int. 160, 753–760 (2005).

S. A. Shapiro, E. Huenges, G. Borm, Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 131, F15–F18 (1997).