Monitoring of land use land cover dynamics and prediction of urban growth using Land Change Modeler in Delhi and its environs, India

Springer Science and Business Media LLC - Tập 29 - Trang 71534-71554 - 2022
Bhavna Singh1, Veluswamy Venkatramanan1, Benidhar Deshmukh2
1School of Inter-Disciplinary and Trans-Disciplinary Studies, Indira Gandhi National Open University Maidan Garhi, Delhi, India
2School of Sciences, Indira Gandhi National Open University, Delhi, India

Tóm tắt

In the recent decades, cities have been expanding at a great pace which changes the landscape rapidly as a result of inflow of people from rural areas and economic progression. Therefore, understanding spatiotemporal dynamics of human induced land use land cover changes has become an important issue to deal with the challenges for making sustainable cities. This study aims to determine the rate of landscape transformations along with its causes and consequences as well as predicting urban growth pattern in Delhi and its environs. Landsat satellite images of 1989, 2000, 2010 and 2020 were used to determine the changes in land use land cover using supervised maximum likelihood classification. Subsequently, Land Change Modeler (LCM) module of TerrSet software was used to generate future urban growth for the year 2030 based on 2010 and 2020 dataset. Validation was carried out by overlaying the actual and simulated 2020 maps. The change detection results showed that urban and open areas increased by 13.44% and 2.40%, respectively, with a substantial decrease in crop land (10.88%) from 1989 to 2020 and forest area increased by 3.48% in 2020 due to restoration programmes. Furthermore, the simulated output of 2030 predicted an increase of 24.30% in urban area and kappa coefficient 0.96. Thus, knowledge of the present and predicted changes will help decision-makers and planners during the process of formulating new sustainable policies, master plans and economic strategies for rapidly growing cities with urban blue-green infrastructures.

Tài liệu tham khảo

Abdullahi S, Pradhan B (2018) Land use change modeling and the effect of compact city paradigms: integration of GIS-based cellular automata and weights-of-evidence techniques. Environ Earth Sci 77:251. https://doi.org/10.1007/s12665-018-7429-z Abuelaish B (2018) Urban land use change analysis and modeling: a case study of the Gaza Strip. In: MT Camacho Olmedo, M Paegelow, JF Mas, F Escobar (Eds.) Geomatic approaches for modeling land change scenarios. Springer, Cham. pp 271–291. https://doi.org/10.1007/978-3-319-60801-3_13 Akin A, Aliffi S, Sunar F (2014) Spatio-temporal urban change analysis and the ecological threats concerning the third bridge in Istanbul City. The Int Arch Photogramm Remote Sens Spat Inf Sci XL7:9-14. https://doi.org/10.5194/isprsarchives-XL-7-9-2014 Alawamy JS, Balasundram SK, Mohd. Hanif AH, Boon Sung CT, (2020) Detecting and analyzing land use and land cover changes in the Region of Al-Jabal Al-Akhdar, Libya using Time-Series Landsat data from 1985 to 2017. Sustainability 12(11):4490. https://doi.org/10.3390/su12114490 Aliani H, Malmir M, Sourodi M, Sourodi M, Kafaky SB (2019) Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County). Environ Earth Sci 78:546. https://doi.org/10.1007/s12665-019-8557-9 Alipbeki O, Alipbekova C, Sterenharz A, Toleubekova Z, Aliyev M, Mineyev N, Amangaliyev K (2020) A spatiotemporal assessment of land use and land cover changes in Peri-Urban areas: a case study of Arshaly District. Kazakhstan Sustainability 12(4):1556. https://doi.org/10.3390/su12041556 Aljoufie M, Zuidgeest M, Brussel M, Maarseveen MV (2011) Urban growth and transport: understanding the spatial temporal relationship. WIT Transactions on The Built Environment 116:315–328. Retrieved 3 Mar 2022. https://www.witpress.com/Secure/elibrary/papers/UT11/UT11027FU1.pdf Al-Shaar W, Gerard JA, Nehme N, Lakiss H, Barakat LB (2021) Application of modified cellular automata Markov chain model: forecasting land use pattern in Lebanon. Model Earth Syst Environ 7:1321–1335. https://doi.org/10.1007/s40808-020-00971-y Al-sharif AAA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7:4291–4301. https://doi.org/10.1007/s12517-013-1119-7 Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275. https://doi.org/10.1016/j.jag.2011.12.014 Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: Simulation of urban future scenarios through cellular automata. Landsc Urban Plan 64(3):145–160. https://doi.org/10.1016/S0169-2046(02)00218-9 Basharin GP, Langville AN, Naumov VA (2004) The life and work of A.A. Markov Linear Algebra and Its Applications 386:3–26. https://doi.org/10.1016/j.laa.2003.12.041 Census (1991) Census of India. https://censusindia.gov.in/digitallibrary/Archive_home.aspx. Retrieved 15 Mar 2022 Census (2001) Census of India. https://censusindia.gov.in/2011-common/census_data_2001.html. Retrieved 15 Mar 2022 Census (2011) Census of India. https://censusindia.gov.in/2011-Common/Archive.html. Retrieved 22 Apr 2021 CGWB (2015) Aquifer mapping and formulation of aquifer management plan in NCR, UP. Central Ground Water Board, Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India, UP. Retrieved 15 Apr 2021. http://cgwb.gov.in/AQM/NAQUIM_REPORT/UP/NCR,%20U.P.pdf Chachra S (1993) Government policies and rural-urban migration. Indian Anthropologist 23(1):73–81. Retrieved 15 Mar 2022. https://www.jstor.org/stable/41921808 Chen Q, Mynett AE (2003) Effects of cell size and configuration in cellular automata based prey–predator modelling. Simul Model Pract Theory 11:609–625. https://doi.org/10.1016/j.simpat.2003.08.006 Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B CPCB (2020) Guidelines for setting up of biodiversity parks in floodplains of rivers of India, including River Ganga. Central Pollution Control Board, Ministry of Environment, Forest and Climate Change, India. Retrieved 6 Mar 2021. https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTE1M18xNjA3NDI3NjkxX21lZGlhcGhvdG8xMTYxMi5wZGY= DBF (2016) Delhi Biodiversity Foundation- origin and concept. Retrieved Apr 16, 2021 from https://www.delhibiodiversityparks.org/origin-concept.html DDA (2021) Delhi Development Authority. https://dda.org.in/planning.aspx Retrieved 25 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2011) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2012) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2013) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2014) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2015) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2016) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 Department of Economics and Statistical Analysis, Haryana (2017) https://esaharyana.gov.in/state-statistical-abstract-of-haryana/ Retrieved 26 Apr 2021 DES (2019a) Statistical abstract of Delhi. Directorate of Economics and Statistics, Delhi. Retrieved 15 Mar 2021. http://des.delhigovt.nic.in/wps/wcm/connect/9e42f900409730e68a0abea50c073453/StatisticalAbstarct2019a.pdf?MOD=AJPERES&lmod=108608480&CACHEID=9e42f900409730e68a0abea50c073453&StatisticalAbstarct2019a DES (2019b) Delhi Statistical Hand Book. Directorate of Economics and Statistics, Delhi. Retrieved 15 Mar 2021. http://des.delhigovt.nic.in/wps/wcm/connect/be7414004f2f3c28b3cfb7a50c073453/handbook_1408.pdf?MOD=AJPERES&lmod=-328276286&CACHEID=be7414004f2f3c28b3cfb7a50c073453 DESH (2019) Statistical abstract of Haryana. Department of Economics and Statistical Analysis, Haryana. Retrieved 15 Mar 2021. https://cdnbbsr.s3waas.gov.in/s32b0f658cbffd284984fb11d90254081f/uploads/2021/07/2021072372.pdf DESUP (2019) Statistical abstract of Uttar Pradesh. Directorate of Economics and Statistics, Uttar Pradesh http://updes.up.nic.in/esd/reports_publication_Elib_public.htm. Retrieved 16 Mar 2022 Deutsch A, Dormann S (2017) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Springer Science and Business Media, New York. https://doi.org/10.1007/978-1-4899-7980-3 Dev M, Veerabhadrappa SM, Jha MK (2020) GIS based temporal analysis of land use pattern and its impact - proposed Gurgaon Manesar urban complex. Int Mech Prod Eng Res Dev 10(3):6941–6952 Devendran AA, Lakshmanan G (2019) Analysis and prediction of urban growth using neural-network-coupled agent-based cellular automata model for Chennai Metropolitan area, Tamil Nadu India. J Indian Soc Remote Sens 47:1515–1526. https://doi.org/10.1007/s12524-019-01003-8 Directorate of Economics and Statistics, Delhi (2019) http://des.delhigovt.nic.in/wps/wcm/connect/DOIT_DES/des/home/. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2011) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2012) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2013) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2014) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2015) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 Directorate of Economics and Statistics, Uttar Pradesh (2016) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 April 2021 Directorate of Economics and Statistics, Uttar Pradesh. (2017) http://updes.up.nic.in/esd/Industrial_Statistics/ASI/Industrial%20Statistics(a).htm. Retrieved 26 Apr 2021 DSC (2022) http://dsclimited.com/dev/index.php?modepage=18&m=8&c=9. Retrieved 10 Mar 2022 Duric N, Pehani P, Oštir K (2014) Application of in-segment multiple sampling in object-based classification. RemoteSensing 6(12):12138–12165. https://doi.org/10.3390/rs61212138 Eastman JR (2016) TerrSet Manual. Clark labs, Clark University, Worcester, USA. Retrieved 15 Feb 2021. https://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf Eastman JR, Toledano J (2018) A short presentation of the Land Change Modeler (LCM). In: MT Camacho Olmedo, M Paegelow, JF Mas, F Escobar (Eds.) Geomatic Approaches for Modeling Land Change Scenarios. Springer, Cham. pp 499–505. https://doi.org/10.1007/978-3-319-60801-3_36 El-Hallaq MA, Habboub MO (2015) Using cellular automata-markov analysis and multi criteria evaluation for predicting the shape of the Dead Sea. Advances in Remote Sensing 4:83–95. https://doi.org/10.4236/ars.2015.41008 ESI (2005) Economic survey of Delhi. Planning Department, Delhi. http://delhiplanning.nic.in/content/economic-survey. Retrieved 10 Mar 2022 ESI (2020) Economic survey of Delhi. Planning Department, Delhi. http://delhiplanning.nic.in/content/economic-survey. Retrieved 10 Mar 2022 Fathizad H, Rostami N, Faramarzi M (2015) Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ Monit Assess 187:629. https://doi.org/10.1007/s10661-015-4805-y Forest Department (2015) Forest & tree cover of Delhi as per India SFR – 2015. http://forest.delhigovt.nic.in/wps/wcm/connect/doit_forest/Forest/Home/Forests+of+Delhi/. Retrieved 18 Apr 2021 Gashaw T, Tulu T, Argaw M, Worqlul AW (2017) Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin. Ethiopia Environ Syst Res 6:17. https://doi.org/10.1186/s40068-017-0094-5 Gharbia SS, Alfatah SA, Gill L, Johnston P, Pilla F (2016) Land use scenarios and projections simulation using an integrated GIS cellular automato algorithms. Model Earth Syst Environ 2:151. https://doi.org/10.1007/s40808-016-0210-y Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017) Cellular automata and markov chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model Earth Syst Environ 3:1245–1262. https://doi.org/10.1007/s40808-017-0397-6 Gorgoglione A, Torretta V (2018) Sustainable management and successful application of constructed wetlands: a critical review. Sustainability 10(11):3910. https://doi.org/10.3390/su10113910 Greenpeace India (2020) Air Quality in the world’s top ten polluted Indian cities improves drastically, still more than 25 μg/m3 WHO prescribed standards. https://www.greenpeace.org/india/en/press/4871/air-quality-in-the-worlds-top-ten-polluted-indian-cities-improves-drastically-still-more-than-25-%ce%bcg-m3-who-prescribed-standards/. Retrieved 24 Apr 2021 Guhathakurta P, Narkhede N, Preetha Menon P, Prasad AK, Sable ST (2020) Observed rainfall variability and changes over Delhi state. Climate Research and Services, India Meteorological Department, Ministry of Earth Sciences, Pune. Retrieved 19 Mar 2021. https://imdpune.gov.in/hydrology/rainfall%20variability%20page/delhi_final.pdf GWYB (2019) Ground water year book of states. Central Ground Water Board, Delhi. http://cgwb.gov.in/GW-Year-Book-State.html Retrieved 26 Apr 2021 Hamad R, Balzter H, Kolo K (2018) Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 10(10):3421. https://doi.org/10.3390/su10103421 Hasan S, Shi W, Zhu X, Abbas S, Khan HUA (2020) Future simulation of land use changes in rapidly urbanizing South China based on Land Change Modeler and remote sensing data. Sustainability 12(11):4350. https://doi.org/10.3390/su12114350 Hasnine M, Rukhsana, (2020) An analysis of urban sprawl and prediction of future urban town in urban area of developing nation: case study in India. J Indian Soc Remote Sens 48:909–920. https://doi.org/10.1007/s12524-020-01123-6 Hyandye C, Martz LW (2017) A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens 38:64–81. https://doi.org/10.1080/01431161.2016.1259675 Iamgurgaon (2020) Aravali Biodiversity Park, Gurugram 2010–2020 Making of a city forest- a ten-year report. iamgurgaon, Gurugram. Retrieved 12 Mar 2021. https://iamgurgaon.org/wp-content/uploads/2020/09/Aravali-Bio-Diversity_-Making-of-a-City-Forest.pdf Jica (2022) https://www.jica.go.jp/english/our_work/evaluation/oda_loan/post/2005/index.html. Retrieved 11 Mar 2022 Kafi KM, Shafri HZM, Shariff ABM (2014) An analysis of LULC change detection using remotely sensed data; a case study of Bauchi City. IOP Conf Ser Earth Environ Sci 20:012056. https://doi.org/10.1088/1755-1315/20/1/012056 Kamusoko C (2012) Markov–cellular automata in geospatial analysis. In: Y Murayama (Ed.) Progress in Geospatial Analysis. Springer, Tokyo, pp 107–124. https://doi.org/10.1007/978-4-431-54000-7_8 Keshtkar H, Voigt W (2016) A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ 2:10. https://doi.org/10.1007/s40808-015-0068-4 Koko AF, Yue W, Abubakar GA, Hamed R, Alabsi AAN (2020) Monitoring and predicting spatio-temporal land use/land cover changes in Zaria City, Nigeria, through an integrated cellular automato and markov chain model (CA-Markov). Sustainability 12(24):10452. https://doi.org/10.3390/su122410452 Kumar KS, Kumari KP, Bhaskar PU (2016) Application of Markov chain & cellular automata based model for prediction of Urban transitions. 2016 International Conference on Electrical, Electronics, and Optimization Techniques 4007–4012. https://doi.org/10.1109/ICEEOT.2016.7755466 Kumar S, Ghosh S, Hooda RS, Singh S (2019) Monitoring and prediction of land use land cover changes and its impact on land surface temperature in the Central Part of Hisar District, Haryana under semi-arid zone of India. J Landsc Ecol 12(3):117–140. https://doi.org/10.2478/jlecol-2019-0020 Lambin EF, Rounsevell M, Geist H (2000) Are agricultural land-use models able to predict changes in land use intensity? Agr Ecosyst Environ 82(1–3):321–331. https://doi.org/10.1016/S0167-8809(00)00235-8 Lillesand T, Kiefer RW, Chipman J (2015) Remote Sensing and Image Interpretation, 7th edn. John Wiley & Sons, Hoboken Liping C, Yujun S, Saeed S (2018) Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—a case study of a hilly area, Jiangle China. Plos ONE 13(7):e0200493. https://doi.org/10.1371/journal.pone.0200493 Liu X, Li X, Liu L, He J, Ai B (2008) A bottom-up approach to discover transition rules of cellular automata using ant intelligence. Int J Geogr Inf Sci 22:1247–1269. https://doi.org/10.1080/13658810701757510 Lu Y, Wu P, Ma X, Li X (2019) Detection and prediction of land use/land cover change using spatiotemporal data fusion and the cellular automata–Markov model. Environ. Monit. Assess. 191:68. https://doi.org/10.1007/s10661-019-7200-2 Luo G, Amuti T, Zhu L, Mambetov BT, Maisupova B, Zhang C (2015) Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model. Reg Environ Change 15:277–289. https://doi.org/10.1007/s10113-014-0638-4 Madaan DK, Madan DK (1995) India’s new economic policy - a macro study. Indian Journal of Asian Affairs 8/9(1/2):104–113. http://www.jstor.org/stable/41950393 Mahmoud SH, Alazba AA (2016) Land cover change dynamics mapping and predictions using EO data and a GIS-cellular automata model: the case of Al-Baha region, Kingdom of Saudi Arabia. Arab J Geosci 9:419. https://doi.org/10.1007/s12517-016-2439-1 Maina J, Wandiga S, Gyampoh B, Charles KKG (2020) Assessment of land use and land cover change using GIS and remote sensing: a case study of Kieni Central Kenya. J Remote Sens GIS 9:270. https://doi.org/10.35248/2469-4134.20.9.270 Mallupattu PK, Reddy JRS (2013) Analysis of land use/land cover changes using remote sensing data and GIS at an Urban Area, Tirupati India. Sci World J 2013:268623. https://doi.org/10.1155/2013/268623 Marovic I, Androjic I, Jajac N, Hanak T (2018) Urban road infrastructure maintenance planning with application of neural networks. Complexity 2018:5160417. https://doi.org/10.1155/2018/5160417 Mengistu DA, Salami AT (2007) Application of remote sensing and GIS in land use/land cover mapping and change detection in a part of south western Nigeria. Afr J Environ Sci Technol 1(5):99–109 Metro (2022) Delhi metro. https://www.delhimetrorail.com/. Retrieved 10 Mar 2022 Mohamed SA, El-Raey ME (2019) Land cover classification and change detection analysis of Qaroun and Wadi El-Rayyan lakes using multi-temporal remotely sensed imagery. Environ Monit Assess 191:229. https://doi.org/10.1007/s10661-019-7339-x Muller MR, Middleton JA (1994) Markov model of land-use change dynamics in the Niagara Region, Ontario Canada. Landsc Ecol 9:151–157 Naikoo MW, Rihan M, Ishtiaque M, Shahfahad, (2020) Analyses of land use land cover (LULC) change and built-upexpansion in the suburb of a metropolitan city: spatio-temporalanalysis of Delhi NCR using landsat datasets. J Urban Manag 9(3):347–359. https://doi.org/10.1016/j.jum.2020.05.004 NCRPB (2021) National Capital Region Planning Board. http://ncrpb.nic.in/ .Retrieved 25 Apr 2021 NGT (2020) National Green Tribunal- order of Original Application No. 909/2018. https://greentribunal.gov.in/caseDetails/DELHI/0701109002082018. Retrieved 15 Apr 2021 Nguyen TA, Le PMT, Pham TM, Hoang HTT, Nguyen MQ, Ta HQ, Phung HTM, Le HTT, Hens L (2019) Toward a sustainable city of tomorrow: a hybrid Markov–cellular automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030. Environ Dev Sustain 21:429–446. https://doi.org/10.1007/s10668-017-0046-2 Qadir A, Tahir M, Abir IA, Hwee LS, Akhtar N (2020) Land change detection of Delhi area, India: a GIS approach. PalArch’s Journal of Archaeology of Egypt / Egyptology 17(9):7769–7780 Rahman A, Kumar S, Fazal S, Siddiqui MA (2012) Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. J Indian Soc Remote Sens 40:689–697. https://doi.org/10.1007/s12524-011-0165-4 Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS technique: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18:77–84. https://doi.org/10.1016/j.ejrs.2015.02.002 Reis S (2008) Analyzing land use/land cover changes using remote sensing and GIS in Rize. North-East Turkey Sensors 8(10):6188–6202. https://doi.org/10.3390/s8106188 Ritter K (2019) Groundwater plummets in Delhi, City of 29 million. https://www.circleofblue.org/2019/india/groundwater-plummets-in-delhi-city-of-29-million/. Retrieved 19 April 2021 Sarkar A, Chouhan P (2019) Dynamic simulation of urban expansion based on cellular automata and markov chain model: a case study in Siliguri Metropolitan Area. West Bengal Model Earth Syst Environ 5:1723–1732. https://doi.org/10.1007/s40808-019-00626-7 Saxena N (2017) Status, revival and greening of water bodies in Delhi. Delhi Parks and Gardens Society, Department of Environment & Forest, Govt. of NCT of Delhi. Retrieved 16 Mar 2021. http://pwd.delhigovt.nic.in/wps/wcm/connect/7e8d0a0049b7df8da347bb26edbf4824/Water+Bodies+Presentation.pdf?MOD=AJPERES&lmod=1827942602&CACHEID=7e8d0a0049b7df8da347bb26edbf4824 Sayemuzzaman M, Jha MK (2014) Modeling of future land cover land use change in North Carolina using markov chain and cellular automata model. Am J Eng Appl Sci 7(3):295–306. https://doi.org/10.3844/ajeassp.2014.295.306 Seneta E (1996) Markov and the birth of chain dependence theory. Int Stat Rev 64(3):255–263. https://doi.org/10.2307/1403785 Shafray E, Kim S (2017) A Study of walkable spaces with natural elements for urban regeneration: a focus on cases in Seoul South Korea. Sustainability 9(4):587. https://doi.org/10.3390/su9040587 Shawul AA, Chakma S (2019) Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin. Ethiopia Environ Earth Sci 78:141. https://doi.org/10.1007/s12665-019-8154-y Shi G, Shan J, Ding L, Ye P, Li Y, Jiang N (2019) Urban road network expansion and its driving variables: a case study of Nanjing City. Int J Environ Res Public Health 16(13):2318. https://doi.org/10.3390/ijerph16132318 Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003. https://doi.org/10.1080/01431168908903939 Singh AK (2017) Biodiversity Park: an innovative approach for green environment. Rai Journal of Technology Research & Innovation 5:9–11. Retrieved 11 Mar 2021. http://www.jru.edu.in/wp-content/uploads/RTJ/vol5/BIODIVERSITY%20PARK%20AN%20INNOVATIVE%20APPROACH.pdf Singh SK, Mustak S, Srivastava PK, Szabo S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using Earth observation datasets and geo-information. Environ Process 2:61–78. https://doi.org/10.1007/s40710-015-0062-x Sinha GN (Ed.) (2014) An introduction to the Delhi Ridge. Department of Forests & Wildlife, Govt. of NCT of Delhi, New Delhi. Retrieved 12 Mar 2021. http://forest.delhigovt.nic.in/wps/wcm/connect/1e22578043fa6dcba014e23e3c4139c7/Delhi_Ridge_Book-Sinha%2C+G.N.+%28Ed.%29+%282014.pdf?MOD=AJPERES&lmod=804673140&CACHEID=1e22578043fa6dcba014e23e3c4139c7 Sustainable Development Goal (2021) Sustainable development goals-goal 11: make cities inclusive, safe, resilient and sustainable. https://www.un.org/sustainabledevelopment/cities/ Retrieved 25 Apr 2021 TCPO (2007) Evaluation study of DMA towns in National Capital Region (NCR). Town and Country Planning Organisation, Ministry of Urban Development, Government of India. Retrieved 6 Mar 2022. http://www.tcpo.gov.in/sites/default/files/TCPO/REPORTS/MUTP%20REPORTS/FinalDMAreport.pdf Twisa S, Buchroithner MF (2019) Land-use and land-cover (LULC) change detection in Wami River Basin. Tanzania Land 8(9):136. https://doi.org/10.3390/land8090136 UN-Habitat (2019) The strategic plan 2020–2023. UN-Habitat for a better urban future, Kenya. Retrieved 24 Mar 2021. https://unhabitat.org/sites/default/files/documents/2019-09/strategic_plan_2020-2023.pdf UN (2019) World Urbanization Prospects:The 2018 Revision. United Nations, Department of Economic and Social Affairs, New York. Retrieved 24 Mar 2021. https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf Virtriana R, Sumarto I, Deliar A, Harto AB, Taufik M, Pasaribu US (2014) The integration method of cellular automata (CA)-Markov chain(MC), West Java’s Northern part characteristics for land cover change prediction study. 2014 2nd International Conference on Technology, Informatics, Management, Engineering & Environment. 80–85. https://doi.org/10.1109/TIME-E.2014.7011596 Wang M, Cai L, Xu H, Zhao S (2019) Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model. Arab J Geosci 12:790. https://doi.org/10.1007/s12517-019-4985-9 Wayback (2022a) Internet Archive Wayback Machine https://web.archive.org/web/20111002234008/http://www.dndflyway.com/. Retrieved 10 Mar 2022 Wayback (2022b) Internet Archive Wayback Machine. https://web.archive.org/web/20160101032537/http://www.hccinfrastructure.com/projects/delhifaridabad_expressway.aspx Retrieved 10 Mar 2022 White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan Econ Space 25(8):1175–1199. https://doi.org/10.1068/a251175 Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601. https://doi.org/10.1103/RevModPhys.55.601 Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10:1–35. https://doi.org/10.1016/0167-2789(84)90245-8 Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, IL World Air Quality Report (2019) World air quality report region & city PM2.5 ranking. IQAir, Switzerland. Retrieved 21 Mar 2021. https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2019-en.pdf Yagoub MM, Al Bizreh AA (2014) Prediction of land cover change using markov and cellular automata models: case of Al-Ain, UAE, 1992–2030. J Indian Soc Remote Sens 42:665–671. https://doi.org/10.1007/s12524-013-0353-5 Yang X, Zheng XQ, Chen R (2014) A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol Modell 283:1–7. https://doi.org/10.1016/j.ecolmodel.2014.03.011