Monitoring of Nitrification in Chloraminated Drinking Water Distribution Systems With Microbiome Bioindicators Using Supervised Machine Learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 2001, A new method for non-parametric multivariate analysis of variance., Austral. Ecol., 26, 32, 10.1111/j.1442-9993.2001.01070.pp.x
Balvočiūtė, 2017, SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare?, BMC Genomics, 18, 10.1186/s12864-017-3501-4
Bartell, 2006, Biomarkers, bioindicators, and ecological risk assessment-a brief review and evaluation., Environ. Bioind., 1, 39, 10.1080/15555270591004920
Bautista-de los Santos, 2016, Emerging investigators series: microbial communities in full-scale drinking water distribution systems – a meta-analysis., Environ. Sci., 2, 631, 10.1039/c6ew00030d
Brodersen, 2010, The Binormal Assumption on Precision-Recall Curves, Proceedings of the 20th International Conference on Pattern Recognition, 4263
Carrico, 2008, Effectiveness of switching disinfectants for nitrification control., J. Am. Water Works Assoc., 100, 104, 10.1002/j.1551-8833.2008.tb09751.x
Chawla, 2002, SMOTE: synthetic minority over-sampling technique., J. Artif. Intell. Res., 16, 341, 10.1613/jair.953
Clarke, 1993, Non-parametric multivariate analyses of changes in community structure., Aust. J. Ecol., 18, 117, 10.1111/j.1442-9993.1993.tb00438.x
Dubin, 2016, Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis., Nat. Commun., 7, 10.1038/ncomms10391
Fawcett, 2006, An introduction to ROC analysis., Pattern Recognit. Lett., 27, 861, 10.1016/j.patrec.2005.10.010
Friedman, 2013, Introduction and impact on regulatory compliance, Proceedings of the Nitrification Prevention and Control in Drinking Water, Manual of Water Supply Practice M56, 1, 10.1016/b978-1-59749-266-9.00001-1
Gomez-Alvarez, 2016, Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria., Environ. Sci., 2, 645, 10.1039/c6ew00053c
Hale, 2017, Shifts in the fecal microbiota associated with adenomatous polyps., Cancer Epidemiol. Biomark. Prev., 26, 85, 10.1158/1055-9965.epi-16-0337
Hall, 2009, The WEKA data mining software: an update., SIGKDD Explor., 11, 10, 10.1145/1656274.1656278
Hammer, 2001, PAST: paleontological statistics software package for education and data analysis., Palaeontol. Electron., 4, 1
Hill, 2013, Assessment and operational responses to nitrification episodes, Proceedings of the Nitrification Prevention and Control in Drinking Water, Manual of Water Supply Practice M56, 227
Hoefel, 2005, Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system., Appl. Environ. Microbiol., 71, 6479, 10.1128/aem.71.11.6479-6488.2005
Holinger, 2014, Molecular analysis of point-of-use municipal drinking water microbiology., Water Res., 49, 225, 10.1016/j.watres.2013.11.027
Hull, 2017, Longitudinal and source-to-tap New Orleans, LA, U.S.A. drinking water microbiology., Environ. Sci. Technol., 51, 4220, 10.1021/acs.est.6b06064
Hwang, 2012, Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments., Appl. Environ. Microbiol., 78, 7856, 10.1128/aem.01892-12
Ji, 2015, Impact of water chemistry, pipe material and stagnation on the building plumbing microbiome., PLoS One, 10, 10.1371/journal.pone.0141087
Kenkel, 2006, On selecting an appropriate multivariate analysis., Can. J. Plant. Sci., 86, 663, 10.4141/p05-164
Knights, 2011, Supervised classification of human microbiota., FEMS Microbiol. Rev., 35, 343, 10.1111/j.1574-6976.2010.00251.x
Lever, 2016, Points of significance: classification evaluation., Nat. Methods, 13, 603, 10.1038/nmeth.3945
Libbrecht, 2015, Machine learning in genetics and genomics., Nat. Rev. Genet., 16, 321, 10.1038/nrg3920
Lowd, 2005, Naive Bayes models for probability estimation, Proceedings of the 22nd Annual International Conference on Machine Learning, 529, 10.1145/1102351.1102418
McCarty, 2002, Bioindicators versus biomarkers in ecological risk assessment., Hum. Ecol. Risk Assess., 8, 159, 10.1080/20028091056791
Pintar, 2005, Assessment of a distribution system nitrification critical threshold concept., J. Am. Water Works Assoc., 97, 116, 10.1002/j.1551-8833.2005.tb10937.x
Pinto, 2014, Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome., mBio, 5, 10.1128/mBio.01135-14
Refaeilzadeh, 2009, Cross-Validation, Encyclopedia of Database Systems, 532, 10.1007/978-0-387-39940-9_565
Regan, 2002, Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system., Appl. Environ. Microbiol., 68, 73, 10.1128/aem.68.1.73-81.2002
Saito, 2015, The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets., PLoS One, 10, 10.1371/journal.pone.0118432
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities., Appl. Environ. Microbiol., 75, 7537, 10.1128/aem.01541-09
Schubert, 2014, Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls., MBio, 5, 10.1128/mBio.01021-14
Segata, 2011, Metagenomic biomarker discovery and explanation., Genome Biol., 12, 10.1186/gb-2011-12-6-r60
Shaw, 2015, Using amplicon sequencing to characterize and monitor bacterial diversity in drinking water distribution systems., Appl. Environ. Microbiol., 81, 6463, 10.1128/aem.01297-15
Siddig, 2016, How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication., Ecol. Indic., 60, 223, 10.1016/j.ecolind.2015.06.036
Skadsen, 1993, Nitrification in a distribution system., J. Am. Water Works. Assoc., 85, 95, 10.1002/j.1551-8833.1993.tb06029.x
Stanish, 2016, Factors influencing bacterial diversity and community composition in municipal drinking waters in the Ohio River basin, USA., PLoS One, 11, 10.1371/journal.pone.0157966
Sul, 2011, Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering., Proc. Natl. Acad. Sci. U.S.A., 108, 14637, 10.1073/pnas.1111435108
Wahman, 2013, Nitrifcation in chloraminated drinking water distribution systems – occurrence, Proceedings of the Nitrification Prevention and Control in Drinking Water, Manual of Water Supply Practice M56, 49
Wang, 2012, Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems., Appl. Environ. Microbiol., 78, 6285, 10.1128/aem.01492-12
Wang, 2014, Microbial community response to chlorine conversion in a chloraminated drinking water distribution system., Environ Sci. Technol., 48, 10624, 10.1021/es502646d
Xia, 2013, Translational biomarker discovery in clinical metabolomics: an introductory tutorial., Metabolomics, 9, 280, 10.1007/s11306-012-0482-9
Zackular, 2014, The human gut microbiome as a screening tool for colorectal cancer., Cancer Prev. Res., 7, 1112, 10.1158/1940-6207.capr-14-0129