Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

Advances in Atmospheric Sciences - Tập 34 Số 8 - Trang 965-976 - 2017
Dongxu Yang1, Huifang Zhang2, Yi Liu1, Baozhang Chen2, Zhaonan Cai1, Daren Lü1
1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aben, I., O. Hasekamp, and W. Hartmann, 2007: Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 104(3), 450–459.

Basu, S., and Coauthors, 2014: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys. Res. Lett., 41(5), 1809–1815.

Basu, S., J. B. Miller, and S. Lehman, 2016: Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation system simulations. Atmos. Chem. Phys, 16, 5665–5683.

Böesch, H., D. Baker, B. Connor, D. Crisp, and C. Miller, 2011: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sensing, 3, 270–304.

Butz, A., O. Hasekamp, C. Frankenberg, and I. Aben, 2009: Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt., 48, 3322–3336.

Chevallier, F., P. I. Palmer, L. Feng, H. Boesch, C. W. O’Dell, and P. Bousquet, 2014: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett., 41(3), 1065–1070.

Deng, F., D. B. A. Jones, C. W. O’Dell, R. Nassar, and N. C. Parazoo, 2016: Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates. J. Geophys. Res., 121, 1896–1913.

Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. I. Morino, and R. Sussmann, 2015: Elevated uptake of CO2 over Europe inferred from GOSAT XCO2 retrievals: A real phenomenon or an artefact of the analysis. Atmos. Chem. Phys. Discuss., 15, 1989–2011.

Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann, 2016: Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: Sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys., 16(3), 1289–1302.

Hammerling, D. M., A. M. Michalak, and S. R. Kawa, 2012a: Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J. Geophys. Res., 117(D6), doi: 10.1029/2011JD017015.

Hammerling, D. M., A. M. Michalak, C. O’Dell, and S. R. Kawa, 2012b: Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys. Res. Lett., 39(8), doi: 10.1029/2012GL051203.

Hasekamp, O. P., and A. Butz, 2008: Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres. J. Geophys. Res., 113, D20309.

Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res., 120, 5253–5266.

Inoue, M., and Coauthors, 2013: Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos. Chem. Phys. Discuss., 13, 9711–9788.

Jacobson, A. R., and Coauthors, 2007: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. methods and global-scale fluxes. Global Biogeochem. Cy., 21(1), 5252-5252.

Jiang, F., and Coauthors, 2016: A comprehensive estimate of recent carbon sinks in China using both top-down and bottomup approaches. Sci. Rep., 6, 22130.

Jiang, F., H. W. Wang, J. M. Chen, L. X. Zhou, W. M. Ju, A. J. Ding, L. X. Liu, and W. Peters, 2013: Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences, 10(8), 5311–5324, doi: 10.5194/bg- 10-5311-2013.

Krol, M., and Coauthors, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432.

Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48(35), 6716–6733.

Kuze, A., and Coauthors, 2014: Long-term vicarious calibration of GOSAT short-wave sensors: Techniques for error reduction and new estimates of radiometric degradation factors. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 3991–4004.

Mao, J. P., and S. R. Kawa, 2004: Sensitivity studies for spacebased measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt., 43(4), 914–927

Miller, C. E., and Coauthors, 2007: Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314.

O’Dell, C. W., and Coauthors, 2012: The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5, 99–121.

Oshchepkov, S., and Coauthors, 2013: Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites. J. Geophys. Res., 118, 1493–1512.

Peters, W., and Coauthors, 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res, 110, 1–18.

Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P. Natl. Acad. Sci. USA, 104(48), 18925–18930.

Peters, W., and Coauthors, 2010: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 16(4), 1317–1337.

Piao, S. L., J. Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang, 2009: The carbon balance of terrestrial ecosystems in China. Nature, 458(7241), 1009–1013.

Qu, Y., and Coauthors, 2013: Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China. Int. J. Remote Sens., 34(11), 3938–3946.

Reuter, M., M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows, 2010: A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmospheric Measurement Techniques, 3, 209–232.

Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Co., Ltd., 81–100.

Spurr, R. J. D., 2006: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 316–342.

Takagi, H., and Coauthors, 2014: Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation. Geophys. Res. Lett., 41(7), 2598–2605.

Uchino, O., and Coauthors, 2012: Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: A case study over Tsukuba. Atmos. Chem. Phys., 12, 3393–3404.

Wang, J. S., S. R. Kawa, G. J. Collatz, D. F. Baker, and L. Ott, 2015: An inversion analysis of recent variability in natural CO2 fluxes using GOSAT and in situ observations. NASA Tech. Rep. GSFC-E-DAA-TN28909.

van der Werf, G. R., and Coauthors, 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 3423–3441.

Wunch, D., and Coauthors, 2011a: The total carbon Column observing network. Philos. Trans. Roy. Soc. London, 369, 2087–2112.

Wunch, D., and Coauthors, 2011b: A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys., 11, 12317–12337.

Yang, D. X., Y. Liu, Z. N. Cai, H. Bösch, R. Parker, P. Palmer, and L. Feng, 2014: Measurement of atmospheric carbon dioxide form space: NIR/SWIR algorithm description and retrieval study on GOSAT observation. ESA SP-724, 1–8.

Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60(23), 2063–2066.

Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, 2016: The spatial and temporal distribution of carbon dioxide over China based on GOSAT observations. Chinese Journal of Atmospheric Sciences, 40(3), 541–550 (in Chinese).

Yoshida, Y., and Coauthors, 2013: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533–1547.

Zhang, H. F., and Coauthors, 2014: Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res., 119, 3500–3515, doi: 10.1002/2013JD021297.

Zhang, H. F., and Coauthors, 2015: Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Science Bulletin, 60(3), 380–386.