Momentum enhancement simulations for hypervelocity impacts on sandstone

International Journal of Impact Engineering - Tập 151 - Trang 103832 - 2021
Sidney Chocron1, James D. Walker1, Donald J. Grosch1, Stephen R. Beissel1, Daniel D. Durda2, Kevin R. Housen3
1Engineering Dynamics Department, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, USA
2Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, Colorado 80302 USA
3The Boeing Co. (Ret.), MS ST-50, Seattle, Washington, 98124, USA

Tài liệu tham khảo

Marchi, 2019, Hypervelocity impact experiments in iron-nickel ingots and iron meteorites: Implications for the NASA Psyche mission, J. Geophys. Res. Planets, 1 Cheng, 2018, AIDA DART asteroid deflection test: Planetary defense and science objectives, Planet. Space Sci., 157, 104, 10.1016/j.pss.2018.02.015 Cheng, 2016, Asteroid Impact & Deflection Assessment mission: Kinetic impactor, Planet. Space Sci., 10.1016/j.pss.2015.12.004 Carnelli, 2006, Learning to deflect near-Earth objects: industrial design of the Don Quijote mission, 57th International Astronautical Congress, 10.2514/6.IAC-06-A3.5.05 Durda, 2019, Laboratory impact experiments with decimeter-to meter-scale targets to measure momentum enhancement, Planet. Space Sci., 178, 10.1016/j.pss.2019.07.008 Flynn, 2019, Momentum transfer in hypervelocity cratering of meteorites and meteorite analogs: Implications for orbital evolution and kinetic impact deflection of asteroids, Int. J. Impact Eng., 136, 2020 Walker, 2013, Momentum enhancement from aluminum striking granite and the scale size effect, Int. J. Impact Eng., 56, 12, 10.1016/j.ijimpeng.2012.08.003 Walker, 2012, Role of target strength in momentum enhancement, AIP Conference Proceedings, 1426 Walker, 2013, Scale size effect in momentum enhancement, Procedia Eng, 58, 240, 10.1016/j.proeng.2013.05.028 Walker, 2015, Damage modeling, scaling and momentum enhancement for asteroid and comet nucleus deflection, Procedia Engineering, 103, 10.1016/j.proeng.2015.04.082 Walker, 2011, Momentum enhancement in hypervelocity impact, International Journal of Impact Engineering, 38, 10.1016/j.ijimpeng.2010.10.026 Walker, 2010, Momentum Enhancement from Kinetic Impactors and Conventional Explosives Durda, 2017, Impact Experiments with Iron-Nickel Targets: Momentum Enhancement and Crater Morphology, Lunar and Planetary Science XLVIII Chocron, 2017, Hypervelocity Impact on Pumice: Scale Effects on Experiments and Simulations, Procedia Eng, 204, 154, 10.1016/j.proeng.2017.09.768 Bruck Syal, 2016, Deflection by kinetic impact: Sensitivity to asteroid properties, Icarus, 269, 50, 10.1016/j.icarus.2016.01.010 Stickle, 2019, Benchmarking impact hydrocodes in the strength regime: Implications for modeling deflection by a kinetic impactor, Icarus, 338, 2020 S. Chocron, J. D. Walker, D. J. Grosch, S. R. Beissel, D. D. Durda, and K. R. Housen, “Hypervelocity Impact on Concrete and Sandstone: Momentum Enhancement from Tests and Hydrocode Simulations, to appear in the Proceedings of the 2019 Hypervelocity Impact Symposium,” 2020. Walker, 2020, Size scaling of hypervelocity-impact ejecta mass and momentum enhancement: Experiments and a nonlocal-shear-band-motivated strain-rate-dependent failure model, Int. J. Impact Eng., 135, 10.1016/j.ijimpeng.2019.103388 Johnson, 2003, Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures, J. Appl. Phys., 94, 1639, 10.1063/1.1589177 A. G. Duba, A. E. Abey, R. P. Bonner, H. C. Heard, and R. N. Schock, “High-Pressure Mechanical Properties of Kayenta Sandstone, Lawrence Livermore Laboratory Report UCRL-51526,” 1974. Johnson, 1976, Analysis of Elastic-Plastic Impact Involving Severe Distortions, J. Appl. Mech., 43, 439, 10.1115/1.3423887 Johnson, 1997 Johnson, 2011, Numerical algorithms and material models for high-velocity impact computations, Int. J. Impact Engng., 38, 456, 10.1016/j.ijimpeng.2010.10.017 G. R. Johnson, S. R. Beissel, and R. A. Stryk, “An improved generalized particle algorithm that includes boundaries and interfaces,” vol. 904, no. January 2001, pp. 875–904, 2002. Holmquist, 1993, A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures Zwiessler, 2017, On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression, J. Struct. Geol., 97, 225, 10.1016/j.jsg.2017.03.007 Walker, 2017, Momentum enhancement due to hypervelocity impacts into pumice, Procedia Engineering, 10.1016/j.proeng.2017.09.765 Hoerth, 2015, Momentum transfer in hypervelocity impact experiments on rock targets, Procedia Engineering, 10.1016/j.proeng.2015.04.027