Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa dựa trên phương pháp tối ưu hóa đồng thời chịu rủi ro phân phối trong thiết kế mạng lưới dịch vụ dưới sự không chắc chắn về nhu cầu
Springer Science and Business Media LLC - Trang 1-53 - 2023
Tóm tắt
Bài báo này đề xuất một phương pháp lập trình đồng thời chịu rủi ro phân phối (DRJCC) mạnh mẽ để tối ưu hóa vấn đề thiết kế mạng lưới dịch vụ (SND) trong điều kiện không chắc chắn về nhu cầu. Phương pháp mạnh mẽ phân phối không yêu cầu thông tin phân phối đầy đủ và sử dụng những dữ liệu lịch sử hạn chế, điều này có ý nghĩa quan trọng trong các tình huống dữ liệu khan hiếm. Việc xem xét đồng thời các ràng buộc cơ hội cho phép kiểm soát hiệu quả hơn xác suất của sự kiện, qua đó các quản lý mạng có thể thực hiện mục tiêu kiểm soát mức độ phục vụ tổng thể của nhiều hàng hóa trong một mạng lưới dịch vụ. Tối ưu hóa DRJCC cũng có thể giúp các nhà ra quyết định điều chỉnh sự thận trọng, độ mạnh mẽ và tỷ lệ dịch vụ của mạng bằng cách thiết lập các tham số xác suất của các ràng buộc cơ hội. Chúng tôi đã chỉnh sửa mô hình DRJCC bằng cách giải quyết các ràng buộc cơ hội đồng thời chịu rủi ro phân phối tương ứng với phương pháp Giá trị-Rủi ro điều kiện trong trường hợp xấu nhất và lý thuyết lạc hoàn. Mô hình đã được hình thành lại gần như dưới dạng chương trình tuyến tính số nguyên hỗn hợp, mà dễ giải hơn so với mô hình lập trình nửa nhất định số nguyên hỗn hợp trong tài liệu hiện có. Chúng tôi cũng phát triển hai phương pháp so sánh là: xấp xỉ bất đẳng thức Bonferroni và chương trình xác suất dựa trên kịch bản. Các nghiên cứu số liệu so sánh cho thấy tính mạnh mẽ và tính xác thực của các công thức đề xuất. Một nghiên cứu trường hợp được thực hiện để thể hiện hiệu suất công nghiệp của SND không xác định dưới sự hình thành DRJCC. Chúng tôi khám phá tác động của tham số mức độ tín nhiệm đến chi phí vận hành và mức độ phục vụ thực tế, đồng thời tiết lộ mối tương quan tổng thể giữa chúng. Chúng tôi cũng rút ra một số nhận thức quản lý thích ứng với rủi ro cho các nhà quản lý đội xe logistics.
Từ khóa
#tối ưu hóa mạng lưới dịch vụ #rủi ro phân phối #không chắc chắn về nhu cầu #lập trình số nguyên hỗn hợp #quản lý đội xe logisticsTài liệu tham khảo
Altın A, Yaman H, Pınar MÇ (2011) The robust network loading problem under hose demand uncertainty: formulation, polyhedral analysis, and computations. INFORMS J Comput 23(1):75–89
Álvarez-Miranda E, Cacchiani V, Lodi A, Parriani T, Schmidt DR (2014) Single-commodity robust network design problem: complexity, instances and heuristic solutions. Eur J Oper Res 238(3):711–723
An K, Lo HK (2014) Ferry service network design with stochastic demand under user equilibrium flows. Transp Res Part B Methodol 66:70–89
Andersson F, Mausser H, Rosen D, Uryasev S (2001) Credit risk optimization with conditional value-at-risk criterion. Math Program 89(2):273–291
Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to uncertainty polytope. CMS 13(2):219–239
Babaei S, Jiang R, Zhao C (2020) Distributionally robust distribution network configuration under random contingency. IEEE Trans Power Syst 35(5):3332–3341
Bai R, Wallace SW, Li J, Chong AYL (2014) Stochastic service network design with rerouting. Transp Res Part B Methodol 60:50–65
Basciftci B, Ahmed S, Shen S (2021) Distributionally robust facility location problem under decision-dependent stochastic demand. Eur J Oper Res 292(2):548–561
Baubaid A, Boland N, Savelsbergh M (2021) The value of limited flexibility in service network designs. Transp Sci 55(1):52–74
Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1):49–71
Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53
Bertsimas D, Doan XV, Natarajan K, Teo CP (2010) Models for minimax stochastic linear optimization problems with risk aversion. Math Oper Res 35(3):580–602
Bonnans JF, Shapiro A (2013) Perturbation analysis of optimization problems. Springer Science & Business Media, Berlin
Cacchiani V, Jünger M, Liers F, Lodi A, Schmidt DR (2016) Single-commodity robust network design with finite and hose demand sets. Math Program 157(1):297–342
Calafiore G, Topcu U, El Ghaoui L (2009) Parameter estimation with expected and residual-at-risk criteria. Syst Control Lett 58(1):39–46
Calafiore GC, Ghaoui LE (2006) On distributionally robust chance-constrained linear programs. J Optim Theory Appl 130(1):1–22
Campi MC, Garatti S, Prandini M (2009) The scenario approach for systems and control design. Annu Rev Control 33(2):149–157
Charnes A, Cooper WW, Symonds GH (1958) Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag Sci 4(3):235–263
Chen W, Sim M, Sun J, Teo CP (2010) From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper Res 58(2):470–485
Chen X, Sim M, Sun P (2007) A robust optimization perspective on stochastic programming. Oper Res 55(6):1058–1071
Chen Z, Kuhn D, Wiesemann W (2023) On approximations of data-driven chance constrained programs over Wasserstein balls. Oper Res Lett 51(3):226–233
Cheng C, Qi M, Zhang Y, Rousseau LM (2018) A two-stage robust approach for the reliable logistics network design problem. Transp Res Part B Methodol 111:185–202
Dai Q, Yang J (2020) A distributionally robust chance-constrained approach for modeling demand uncertainty in green port-hinterland transportation network optimization. Symmetry 12(9):1492
Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper Res 58(3):595–612
Dong L, Li J, Pu T, Chen N (2019) Distributionally robust optimization model of active distribution network considering uncertainties of source and load. J Modern Power Syst Clean Energy 7(6):1585–1595
Duan C, Fang W, Jiang L, Yao L, Liu J (2018) Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric. IEEE Trans Power Syst 33(5):4924–4936
El Ghaoui L, Oustry F, Oks M (2000) Worst-case value-at-risk and robust asset allocation: a semidefinite programming approach. Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA
El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper Res 51(4):543–556
Elbert R, Müller JP, Rentschler J (2020) Tactical network planning and design in multimodal transportation-a systematic literature review. Res Transp Bus Manag 35:100462
Fattahi M, Govindan K (2017) Integrated forward/reverse logistics network design under uncertainty with pricing for collection of used products. Ann Oper Res 253(1):193–225
Fazli-Khalaf M, Khalilpourazari S, Mohammadi M (2019) Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Ann Oper Res 283(1):1079–1109
Giliani H, Sahebi H (2021) A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study. Biomass Convers Biorefinery 11(6):2521–2542
Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1):1–38
Gong H, Zhang Z (2022) Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems. Eur J Oper Res 297(2):496–510
Govindan K, Fattahi M (2017) Investigating risk and robustness measures for supply chain network design under demand uncertainty: a case study of glass supply chain. Int J Prod Econ 183:680–699
Govindan K, Fattahi M, Keyvanshokooh E (2017) Supply chain network design under uncertainty: a comprehensive review and future research directions. Eur J Oper Res 263(1):108–141
Hewitt M, Crainic TG, Nowak M, Rei W (2019) Scheduled service network design with resource acquisition and management under uncertainty. Transp Res Part B Methodol 128:324–343
Hoff A, Lium AG, Løkketangen A, Crainic TG (2010) A metaheuristic for stochastic service network design. J Heuristics 16(5):653–679
Hota AR, Cherukuri A, Lygeros J (2019) Data-driven chance constrained optimization under Wasserstein ambiguity sets. In: 2019 American Control Conference. IEEE, pp 1501–1506
Jabbarzadeh A, Fahimnia B, Seuring S (2014) Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application. Transp Res Part E Logist Transp Rev 70:225–244
Jiang N, Xie W (2022) Also-x and also-x+: better convex approximations for chance constrained programs. Oper Res 70(6):3581–3600
Jiang R, Guan Y (2016) Data-driven chance constrained stochastic program. Math Program 158(1):291–327
Khatami M, Mahootchi M, Farahani RZ (2015) Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transp Res Part E Logist Transp Rev 79:1–21
Koster AM, Kutschka M, Raack C (2013) Robust network design: formulations, valid inequalities, and computations. Networks 61(2):128–149
Lee C, Lee K, Park S (2013) Benders decomposition approach for the robust network design problem with flow bifurcations. Networks 62(1):1–16
Lium AG, Crainic TG, Wallace SW (2009) A study of demand stochasticity in service network design. Transp Sci 43(2):144–157
Lo HK, An K, Lin Wh (2013) Ferry service network design under demand uncertainty. Transp Res Part E Logist Transp Rev 59:48–70
Ma L, Liu Y, Liu Y (2020) Distributionally robust design for bicycle-sharing closed-loop supply chain network under risk-averse criterion. J Clean Prod 246:118967
Mattia S (2013) The robust network loading problem with dynamic routing. Comput Optim Appl 54(3):619–643
Miller BL, Wagner HM (1965) Chance constrained programming with joint constraints. Oper Res 13(6):930–945
Müller JP, Elbert R, Emde S (2021) Intermodal service network design with stochastic demand and short-term schedule modifications. Comput Ind Eng 159:107514
Nakao H, Shen S, Chen Z (2017) Network design in scarce data environment using moment-based distributionally robust optimization. Comput Oper Res 88:44–57
Nemirovski A, Shapiro A (2006) Convex approximations of chance constrained programs. SIAM J Optim 17(4):969–996
Nickel S, Saldanha-da Gama F, Ziegler HP (2012) A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega 40(5):511–524
Noyan N (2018) Risk-averse stochastic modeling and optimization. In: Recent advances in optimization and modeling of contemporary problems, INFORMS, pp 221–254
Pimentel BS, Mateus GR, Almeida FA (2013) Stochastic capacity planning and dynamic network design. Int J Prod Econ 145(1):139–149
Popescu I (2007) Robust mean-covariance solutions for stochastic optimization. Oper Res 55(1):98–112
Prékopa A (1970) On probabilistic constrained programming. In: Proceedings of the Princeton symposium on mathematical programming, Citeseer, vol 113, p 138
Qiu R, Wang Y (2016) Supply chain network design under demand uncertainty and supply disruptions: a distributionally robust optimization approach. Sci Program. https://doi.org/10.1155/2016/3848520
Rahmani D (2019) Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions. Ann Oper Res 283(1):613–641
Ramezani M, Bashiri M, Tavakkoli-Moghaddam R (2013) A robust design for a closed-loop supply chain network under an uncertain environment. Int J Adv Manuf Technol 66(5):825–843
Rezaei M, Chaharsooghi SK, Kashan AH, Babazadeh R (2020) Optimal design and planning of biodiesel supply chain network: a scenario-based robust optimization approach. Int J Energy Environ Eng 11(1):111–128
Sadghiani NS, Torabi S, Sahebjamnia N (2015) Retail supply chain network design under operational and disruption risks. Transp Res Part E Logist Transp Rev 75:95–114
Samani MRG, Hosseini-Motlagh SM (2019) An enhanced procedure for managing blood supply chain under disruptions and uncertainties. Ann Oper Res 283(1):1413–1462
Scarf HE (1957) A min-max solution of an inventory problem. Rand Corporation Santa Monica
Scutellà MG (2009) On improving optimal oblivious routing. Oper Res Lett 37(3):197–200
Shen S, You M, Ma Y (2017) Single-commodity stochastic network design under demand and topological uncertainties with insufficient data. Naval Res Logist (NRL) 64(2):154–173
Sun H, Gao Z, Szeto W, Long J, Zhao F (2014) A distributionally robust joint chance constrained optimization model for the dynamic network design problem under demand uncertainty. Netw Spat Econ 14(3):409–433
Sun H, Li J, Wang T, Xue Y (2022) A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions. Transp Res Part E: Logist Transp Rev 157:102578
Toker O, Ozbay H (1995) On the np-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proceedings of 1995 American Control Conference-ACC’95, vol 4. IEEE, pp 2525–2526
Wang C, Chen S (2020) A distributionally robust optimization for blood supply network considering disasters. Transp Res Part E Logist Transp Rev 134:101840
Wang X, Crainic TG, Wallace SW (2019) Stochastic network design for planning scheduled transportation services: the value of deterministic solutions. INFORMS J Comput 31(1):153–170
Wang Z, Qi M (2020) Robust service network design under demand uncertainty. Transp Sci 54(3):676–689
Xie W (2021) On distributionally robust chance constrained programs with Wasserstein distance. Math Program 186(1):115–155
Xie W, Ahmed S (2017) Distributionally robust chance constrained optimal power flow with renewables: a conic reformulation. IEEE Trans Power Syst 33(2):1860–1867
Xie W, Ahmed S (2018) On deterministic reformulations of distributionally robust joint chance constrained optimization problems. SIAM J Optim 28(2):1151–1182
Xie W, Ahmed S, Jiang R (2019) Optimized bonferroni approximations of distributionally robust joint chance constraints. Math Program pp 1–34
Yang L, Xu Y, Gu W, Sun H (2021) Distributionally robust chance-constrained optimal power-gas flow under bidirectional interactions considering uncertain wind power. IEEE Trans Smart Grid 12(2):1722–1735
Zhang P, Liu Y, Yang G, Zhang G (2020a) A distributionally robust optimisation model for last mile relief network under mixed transport. Int J Product Res pp 1–25
Zhang P, Liu Y, Yang G, Zhang G (2020b) A distributionally robust optimization model for designing humanitarian relief network with resource reallocation. Soft Comput 24(4):2749–2767
Zhang P, Liu Y, Yang G, Zhang G (2020c) A multi-objective distributionally robust model for sustainable last mile relief network design problem. Ann Oper Res pp 1–42
Zhang X, Liu X (2022) A two-stage robust model for express service network design with surging demand. Eur J Oper Res 299(1):154–167
Zhang Y, Jiang R, Shen S (2018) Ambiguous chance-constrained binary programs under mean-covariance information. SIAM J Optim 28(4):2922–2944
Zymler S, Kuhn D, Rustem B (2013) Distributionally robust joint chance constraints with second-order moment information. Math Program 137(1):167–198
Zymler S, Kuhn D, Rustem B (2013) Worst-case value at risk of nonlinear portfolios. Manag Sci 59(1):172–188
