Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Composite Molybdenum Disulfide-Graphene Oxide như chất hấp phụ trong chiết xuất pha rắn phân tán để làm giàu bốn chất bảo quản paraben trong mỹ phẩm
Tóm tắt
Composite Disulfide Molybdenum-Graphene Oxide (MoS2/GO) đã được tổng hợp và sử dụng làm chất hấp phụ trong chiết xuất pha rắn phân tán. Bốn chất bảo quản paraben, bao gồm methylparaben, ethylparaben, propylparaben và butylparaben, đã được làm giàu bằng MoS2/GO và xác định bằng kỹ thuật sắc ký lỏng hiệu năng cao siêu. Disulfide Molybdenum đã được chèn vào các lớp graphene oxide nhằm giảm thiểu hiện tượng tự ngưng tụ bằng phương pháp solvothermal. Kết quả thực nghiệm cho thấy composite MoS2/GO đã chuẩn bị thể hiện khả năng làm giàu tuyệt vời đối với bốn chất bảo quản paraben này, với thời gian hấp phụ là 10 phút và thời gian elution ngắn chỉ 1 phút. Cơ chế của composite MoS2/GO và paraben được cho là do liên kết hydro và lực hút tĩnh điện. Độ lệch chuẩn tương đối (RSD, n = 9) của phương pháp này thấp hơn 7.6%. Giới hạn phát hiện và giới hạn định lượng nằm trong khoảng 0.4–2.3 ng/mL và 1.4–7.6 ng/mL, tương ứng. Tỷ lệ phục hồi đạt được từ các chất bảo quản paraben trong mẫu mỹ phẩm là trong khoảng 91.3–124% với RSD dưới 10%. Phương pháp đã phát triển có tiềm năng lớn trong việc xác định các chất ô nhiễm mới nổi với chi phí thấp và độ nhạy cao.
Từ khóa
#Molybdenum disulfide #graphene oxide #composite #paraben preservatives #dispersive solid-phase extraction #ultra-high-performance liquid chromatographyTài liệu tham khảo
Cabaleiro N, de la Calle I, Bendicho C, Lavilla I (2014) An overview of sample preparation for the determination of parabens in cosmetics. TrAC-Trends Anal Chem 57:34–46. https://doi.org/10.1016/j.trac.2014.02.003
Grecco C, Souza I, Acquaro Junior V, Queiroz M (2019) Determination of parabens in breast milk samples by dispersive liquid-liquid microextraction (DLLME) and ultra-high-performance liquid chromatography tandem mass spectrometry. J Brazil Chem Soc 30(1):48–59. https://doi.org/10.21577/0103-5053.20180151
Li S, Jia M, Guo H, Hou X (2018) Development and application of metal organic framework/chitosan foams based on ultrasound-assisted solid-phase extraction coupling to UPLC-MS/MS for the determination of five parabens in water. Anal Bioanal Chem 410(25):6619–6632. https://doi.org/10.1007/s00216-018-1269-2
Bilal M, Iqbal H (2019) An insight into toxicity and human-health-related adverse consequences of cosmeceuticals - a review. Sci Total Environ 670:555–568. https://doi.org/10.1016/j.scitotenv.2019.03.261
Zhu H, Kannan K (2020) Parabens in stretch mark creams: a source of exposure in pregnant and lactating women. Sci Total Environ 744:141016. https://doi.org/10.1016/j.scitotenv.2020.141016
Zotou A, Sakla I, Tzanavaras PD (2010) LC-determination of five paraben preservatives in saliva and toothpaste samples using UV detection and a short monolithic column. J Pharm Biomed Anal 53(3):785–789. https://doi.org/10.1016/j.jpba.2010.05.018
Derisso CR, Pompei CME, Spadoto M, Pinto T d S, Vieira EM (2020) Occurrence of parabens in surface water, wastewater treatment plant in southeast of Brazil and assessment of their environmental risk. Water Air Soil Poll 231:468. https://doi.org/10.1007/s11270-020-04835-0
Shen X, Liang J, Zheng L, Wang H, Wang Z, Ji Q, Chen Q, Lv Q (2018) Ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for determination of parabens in human breast tumor and peripheral adipose tissue. J Chromatogr B 1096:48–55. https://doi.org/10.1016/j.jchromb.2018.08.004
Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 1217:1–6. https://doi.org/10.1016/j.chroma.2009.11.005
Grover A, Mohiuddin I, Malik AK, Aulakh JS, Kukkar D, Kim K (2021) Chitosan-Ni/Fe layered double hydroxide composites as an efficient solid phase extraction sorbent for HPLC-PDA monitoring of parabens in personal care products. Chemosphere 264:128429. https://doi.org/10.1016/j.chemosphere.2020.128429
Eftekhari A, Frederiksen H, Andersson A, Weschler AJ, Morrison G (2020) Predicting transdermal uptake of phthalates and a paraben from cosmetic cream using the measured fugacity. Environ Sci Technol 54:7471–7484. https://doi.org/10.1021/acs.est.0c01503
Farajzadeh MA, Khosrowshahi EM, Khorram P (2013) Simultaneous derivatization and air-assisted liquid-liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection. J Sep Sci 36:3571–3578. https://doi.org/10.1002/jssc.201300436
Khani R, Ghasemi JB, Shemirani F (2014) Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction. Spectrochim Acta A 122:295–303. https://doi.org/10.1016/j.saa.2013.11.072
Yang T, Tsai F, Chen C, Yang TC, Lee M (2010) Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta 668:188–194. https://doi.org/10.1016/j.aca.2010.04.001
Shen X, Liang J, Zheng L, Wang W, Wang Z, Jia Q, Chen Q, Lv Q (2018) Ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for determination of parabens in human breast tumor and peripheral adipose tissue. J Chromatogr A 1096:48–55. https://doi.org/10.1016/j.jchromb.2018.08.004
González-Sálamo J, González-Curbelo M, Hernández-Borges J, Rodríguez-Delgado M (2019) Use of Basolite® F300 metal-organic framework for the dispersive solid-phase extraction of phthalic acid esters from water samples prior to LC-MS determination. Talanta 195:236–244. https://doi.org/10.1016/j.talanta.2018.11.049
Milheiro J, Ferreira LC, Filipe-Ribeiro L, Cosme F, Nunes FM (2019) A simple dispersive solid phase extraction clean-up/concentration method for selective and sensitive quantification of biogenic amines in wines using benzoyl chloride derivatisation. Food Chem 274:110–117. https://doi.org/10.1016/j.foodchem.2018.08.116
Zhu B, Xu X, Luo J, Jin S, Chen W, Liu Z, Tian C (2019) Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chem 276:202–208. https://doi.org/10.1016/j.foodchem.2018.09.152
Cheng J, Zhang S, Wang S, Wang P, Su XO, Xie J (2019) Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy. Food Chem 276:157–163. https://doi.org/10.1016/j.foodchem.2018.10.004
Xiao R, Wang S, Ibrahim MH, Abdu HI, Shan D, Chen J, Lu X (2019) Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water. J Chromatogr A 1593:1–8. https://doi.org/10.1016/j.chroma.2019.02.005
Han B, Li Y, Qian B, He Y, Peng L, Yu H (2018) Adsorption and determination of polycyclic aromatic hydrocarbons in water through the aggregation of graphene oxide. Open Chem 16:716–725. https://doi.org/10.1515/chem-2018-0078
Zhuang S, Zhu X, Wang J (2018) Kinetic, equilibrium, and thermodynamic performance of sulfonamides adsorption onto graphene. Environ Sci Pollut Res 25:36615–36613. https://doi.org/10.1007/s11356-018-3368-1
Fan W, He M, Wu X, Chen B, Hu B (2015) Graphene oxide/polyethyleneglycol composite coated stir bar for sorptive extraction of fluoroquinolones from chicken muscle and liver. J Chromatogr A 1418:36–44. https://doi.org/10.1016/j.chroma.2015.09.052
Lv F, Gan N, Cao Y, Zhou Y, Zuo R, Dong Y (2017) A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography-mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food. J Chromatogr A 1525:42–50. https://doi.org/10.1016/j.chroma.2017.10.026
Yu Z, Ye J, Chen W, Xu S, Huang F (2017) Fabrication of few-layer molybdenum disulfide/reduced graphene oxide hybrids with enhanced lithium storage performance through a supramolecule-mediated hydrothermal route. Carbon 114:125–133. https://doi.org/10.1016/j.carbon.2016.12.002
Choi M, Hwang J, Setiadi H, Chang W, Kim J (2017) One-pot synthesis of molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites and their high electrochemical performance as an anode in lithium ion batteries. J Supercrit Fluids 127:81–89. https://doi.org/10.1016/j.supflu.2017.04.003
Juan YL, Dan ZXC, Liao QG, Wen ZD, Guang LL (2020) Pipette-tip solid-phase extraction using cetyltrimethylammonium bromide enhanced molybdenum disulfide nanosheets as an efficient adsorbent for the extraction of sulfonamides in environmental water samples. J Sep Sci 43:905–911. https://doi.org/10.1002/jssc.201900871
An J, Wang X, Ye N (2017) Molybdenum disulfide as a dispersive solid-phase extraction adsorbent for determination of sulfonamide residues in water samples using capillary electrophoresis. ChemistrySelect 2:9046–9051. https://doi.org/10.1002/slct.201701382
Liu C, Wang Q, Jia F, Song S (2019) Adsorption of heavy metals on molybdenum disulfide in water: a critical review. J Mol Liq 292:111390. https://doi.org/10.1016/j.molliq.2019.111390
Jia F, Wang Q, Wu J, Li Y, Song S (2017) Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain Chem Eng 5(8):7410–7419. https://doi.org/10.1021/acssuschemeng.7b01880
Liu C, Jia F, Wang Q, Yang B, Song S (2017) Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Appl Mater Today 9:220–228. https://doi.org/10.1016/j.apmt.2017.07.009
Xie H, Xiong X (2017) A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. J Environ Chem Eng 5(1):1150–1158. https://doi.org/10.1016/j.jece.2017.01.044