Hiệu ứng neo molybdenum trong chất xúc tác Fe–Mo/MgO cho tổng hợp ống nano carbon đa lớp

Reaction Kinetics, Mechanisms and Catalysis - Tập 122 - Trang 775-791 - 2017
S. Panic1, B. Bajac1, S. Rakić2, Á. Kukovecz3, Z. Kónya3,4, V. Srdić1, G. Boskovic1
1Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
2Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
3Department of Applied and Enivonmental Chemistry, University of Szeged, Szeged, Hungary
4MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary

Tóm tắt

Hai chất xúc tác đơn kim loại dựa trên Fe và bốn chất xúc tác hai kim loại dựa trên Fe–Co và Fe–Mo, được hỗ trợ trên Al2O3 và MgO thương mại, đã được thử nghiệm trong quá trình tổng hợp ống nano carbon (CNT) bằng pyrolysis etilen xúc tác. Mục tiêu là đánh giá ảnh hưởng của việc bổ sung Mo vào Fe, cùng với vai trò cụ thể của vật liệu hỗ trợ. Kính hiển vi điện tử truyền qua đã chỉ ra một hiệu ứng tương hỗ giữa Mo và MgO: tương tác kim loại-vật liệu hỗ trợ tối ưu (MSI) dẫn đến các hạt nano Fe–Mo nhỏ, rõ ràng và phân bố cao, cho phép hiệu suất pyrolysis tốt nhất. Điều này có thể được mô tả như là năng suất CNT cao nhất được trình bày trên diện tích bề mặt cụ thể của chất xúc tác, cũng như các ống nano CNT mỏng nhất với phân bố đường kính hẹp nhất. Thăm dò Raman và nhiễu xạ tia X của các ống nano CNT thu được trên cùng một chất xúc tác tiết lộ chất lượng cao nhất của chúng về mặt khuyết tật mạng, cũng như độ trong suốt.

Từ khóa

#ống nano carbon #chất xúc tác #Fe–Co #Fe–Mo #Al2O3 #MgO #pyrolysis etilen #kính hiển vi điện tử truyền qua #tương tác kim loại-vật liệu hỗ trợ #hiệu suất pyrolysis

Tài liệu tham khảo

Ryu H, Singh BK, Bartwal KS (2008) Synthesis and optimization of MWCNTs on Co–Ni/MgO by thermal CVD. Adv Condens Matter Phys 2008:1–6 Khavrus VO, Lemesh NV, Gordijchuk SV, Tripolsky AI, Ivashchenko TS, Biliy MM, Strizhak PE (2008) Chemical catalytic vapor deposition (CCVD) synthesis of carbon nanotubes by decomposition of ethylene on metal (Ni Co, Fe) nanoparticles. React Kinet Catal Lett 93:295–303 Xu X, Huang S, Yang Z, Zou C, Jiang J, Shang Z (2011) Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe–Mo/MgO catalyst. Mater Chem Phys 127:379–384 Yeoh W-M, Lee K-Y, Chai S-P, Lee K-T, Mohamed AR (2009) Synthesis of high purity multi-walled carbon nanotubes over Co–Mo/MgO catalyst by the catalytic chemical vapor deposition of methane. New Carbon Mater 24:119–123 Li Y, Li D, Wang G (2011) Methane decomposition to CO x -free hydrogen and nano-carbon material on group 8–10 base metal catalysts: a review. Catal Today 162:1–48 Veziri ChM, Pilatos G, Karanikolos GN, Labropoulos A, Kordatos K, Kasselouri-Rigopoulou V, Kanellopoulos NK (2008) Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition. Microporous Mesoporous Mater 110:41–50 Wang G, Wang J, Wang H, Bai J (2014) Preparation and evaluation of molybdenum modified Fe/MgO catalysts for the production of single-walled carbon nanotubes and hydrogen-rich gas by ethanol decomposition. J Environ Chem Eng 2:1588–1595 Liu BC, Lyu SC, Jung SI, Kang HK, Yang C-W, Park JW, Park CY, Lee CJ (2004) Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe–Mo/MgO catalyst. Chem Phys Lett 383:104–108 Labunov V, Basaev A, Shulitski B, Shaman Y, Komissarov I, Prudnikava A, Tay BK, Shakerzadeh M (2012) Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe–Mo–MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Res Lett 7:102–109 Dubey P, Kyu Choi S, Kim B, Lee CJ (2012) Synthesis of thin-multiwalled carbon nanotubes by Fe–Mo/MgO catalyst using sol–gel method. Carbon Lett 13:99–108 Shokry SA, El Morsi AK, Sabaa MS, Mohamed RR, El Sorogy HE (2014) Study of the productivity of MWCNT over Fe and Fe–Co catalysts supported on SiO2, Al2O3 and MgO. Egypt J Pet 23:183–189 Ratkovic S, Dj Vujicic, Kiss E, Boskovic G, Geszti O (2011) Different degree of weak metal-support interaction in Fe-(Ni)/Al2O3 catalyst governing activity and selectivity in carbon nanotubes production using ethylene. Mater Chem Phys 129:398–405 Ermakova M, Ermakov D, Chuvilin A, Kuvshinov G (2001) Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J Catal 201:183–197 McVicker GB, Vannice MA (1980) The preparation, characterization, and use of supported potassium-group VIII metal complexes as catalysts for CO hydrogenation. J Catal 63:25–34 Putanov P, Kiš E, Boskovic G, Lazar K (1991) Effects of the method of preparation of MgC2O4 as a support precursor on the properties of iron/magnesium oxide catalysts. Appl Catal 73:17–26 Tsoufis T, Xidas P, Jankovic L, Gournis D, Saranti A, Bakas T, Karakassides M (2007) Catalytic production of carbon nanotubes over Fe–Ni bimetallic catalysts supported on MgO. Diam Relat Mater 16:155–160 Panic S, Rakic D, Guzsvány V, Kiss E, Boskovic G, Kónya Z, Kukovecz A (2015) Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design. Chemosphere 141:87–93 Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Dordrecht Zingg DS, Makovsky LE, Tischer RE, Brown FR, Hercules DM (1980) A surface spectroscopic study of molybdenum-alumina catalysts using X-ray photoelectron, ion-scattering, and Raman spectroscopies. J Phys Chem 84:2898–2906 Teo KBK, Singh C, Chowalla M, Milne WI (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and technology, vol X. American Scientific Publishers, Los Angeles, pp 1–22 Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill Book Co., New York Fogler K (1984) In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 6. Springer, Berlin, pp 227–305 Tzou MS, Jiang HI, Sachtler WMH (1986) Chemical anchoring of platinum in zeolites. Appl Catal 20:231–238 Boskovic G, Vlajnic G, Kis E, Putanov P, Guczi L, Lazar K (1994) Geometric factors in K and Al promoting of the Fe/MgO Fischer–Tropsch catalyst. Ind Eng Chem Res 33:2090–2095 Awadallah E, Aboul Enein AA, Al-Desouki DS, Aboul-Gheit AK (2014) Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts. Appl Surf Sci 296:100–107 Boskovic G, Ratkovic S, Kiss E, Getzi O (2013) Carbon nanotubes purification constraints due to large Fe-Ni/Al2O3 catalyst particles encapsulation. Bull Mater Sci 36:1–7 Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucas AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257 Louis B, Gulino G, Vieira R, Amadou J, Dintzer T, Galvagno S, Centi G, Ledoux MJ, Pham-Huu C (2005) High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst. Catal Today 102–103:23–28 Chiang Y-C, Lin W-H, Chang Y-C (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410 Singh D, Iyer PK, Giri PK (2010) Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam Relat Mater 19:1281–1288 Zuo JM, Kim T, Celik-Aktas A, Tao J (2007) Quantitative structural analysis of individual nanotubes by electron diffraction. J Crystallogr 222:625–633 Lu C, Su F, Hu S (2008) Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl Surf Sci 254:7035–7041 Zhang X, Chen W (2015) Mechanisms of pore formation on multi-wall carbon nanotubes by KOH activation. Microporous Mesoporous Mat 206:194–201 Parashar UK, Bhandari S, Srivastava RK, Jariwala D, Srivastava A (2011) Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Nanoscale 3:3876–3882 Bokobza L, Bruneel J-L, Couzi M (2014) Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib Spectrosc 74:57–63 Zhou J, Song H, Fu B, Wu B, Chen X (2010) Synthesis and high-rate capability of quadrangular carbon nanotubes with one open end as anode materials for lithium-ion batteries. J Mater Chem 20:2794–2800 Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437 Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44:3239–3246 Cuesta A, Dhamelincourt P, Laureyns J, Martinezalonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32:1523–1532 Bonhomme F, Lassegues JC, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 148:E450–E458 Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:75414–1–75414-13 Santangelo S, Messina G, Faggio G, Lanza M, Milone C (2011) Evaluation of crystalline perfection degree of multi-walled carbon nanotubes: correlations between thermal kinetic analysis and micro-Raman spectroscopy. J Raman Spectrosc 42:593–602 Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563 Juang ZY, Lai JF, Weng CH, Lee JH, Lai HJ, Lai TS, Tsai CH (2004) On the kinetics of carbon nanotube growth by thermal CVD method. Diam Relat Mater 13:2140–2146 Yu Z, Chen D, Tødtal B, Holmen A (2005) Effect of catalyst preparation on the carbon nanotube growth rate. Catal Today 100:261–267 Wirth CT, Zhang C, Zhong G, Hofmann S, Robertson J (2009) Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3:3560–3566