Molybdenum Carbide‐Decorated Metallic Cobalt@Nitrogen‐Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution

Small - Tập 14 Số 16 - 2018
Can Wu1,2, Dan Liú1, Hui Li1, Jinghong Li1
1Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
2Faculty of Materials Science & Engineering Hubei University Wuhan 430062 China

Tóm tắt

AbstractElectrocatalytic hydrogen evolution reaction (HER) based on water splitting holds great promise for clean energy technologies, in which the key issue is exploring cost‐effective materials to replace noble metal catalysts. Here, a sequential chemical etching and pyrolysis strategy are developed to prepare molybdenum carbide‐decorated metallic cobalt@nitrogen‐doped porous carbon polyhedrons (denoted as Mo/Co@N–C) hybrids for enhanced electrocatalytic hydrogen evolution. The obtained metallic Co nanoparticles are coated by N‐doped carbon thin layers while the formed molybdenum carbide nanoparticles are well‐dispersed in the whole Co@N–C frames. Benefiting from the additionally implanted molybdenum carbide active sites, the HER performance of Mo/Co@N–C hybrids is significantly promoted compared with the single Co@N–C that is derived from the pristine ZIF‐67 both in alkaline and acidic media. As a result, the as‐synthesized Mo/Co@N–C hybrids exhibit superior HER electrocatalytic activity, and only very low overpotentials of 157 and 187 mV are needed at 10 mA cm−2 in 1 m KOH and 0.5 m H2SO4, respectively, opening a door for rational design and fabrication of novel low‐cost electrocatalysts with hierarchical structures toward electrochemical energy storage and conversion.

Từ khóa


Tài liệu tham khảo

10.1002/anie.200602373

10.1039/C5CS00777A

10.1039/C5EE03761A

10.1039/c1cp20351g

10.1021/jacs.6b00332

10.1016/j.nanoen.2016.04.008

10.1016/j.electacta.2017.07.178

10.1021/acs.chemmater.5b01734

10.1021/ja404523s

10.1039/C4EE01329H

10.1002/anie.201200699

10.1021/ja4081056

10.1002/ange.201207111

10.1039/C6TA06553H

10.1002/chem.201701064

10.1021/acsami.7b13822

10.1002/smll.201602873

10.1021/acsami.5b10727

10.1002/aenm.201600087

10.1021/jacs.6b08491

10.1039/C6NR04572C

10.1039/C6TA05411K

10.1021/acsnano.6b01247

10.1021/acsami.7b01647

10.1021/acscatal.6b03291

10.1039/C3SC51711J

10.1021/jacs.6b00757

10.1021/jacs.6b09351

10.1021/acscatal.5b02291

10.1039/C6TA00223D

10.1039/C7SE00397H

10.1002/cctc.201501341

10.1021/cs500923c

10.1021/cm502035s

10.1039/C4TA00577E

10.1021/jacs.5b02465

10.1002/smll.201700917

10.1016/j.jcrysgro.2015.02.064

10.1002/anie.201702649

10.1002/adfm.201601193

10.1039/C5TA04624F

10.1002/celc.201600325

10.1021/acs.nanolett.5b01579

10.1007/s13203-016-0172-z

10.1039/c3ra46539j

Xiao T., 2002, J. Catal., 211, 183

10.1016/j.apcata.2010.12.024

10.1021/acsnano.7b00365

10.1021/acsnano.6b06580

10.1016/j.ijhydene.2016.10.017

10.1021/acsnano.6b04725

10.1002/anie.201509382

10.1002/adma.201004110

10.1039/C5CP03890A

10.1039/C4NR06215A

10.1039/C4TA06463A

10.1039/C5CC09832G

10.1039/C5SC04425A

10.1039/C5EE01155H

10.1002/anie.201508715

10.1039/C6EE01786J

10.1039/C4TA04337E

10.1021/acsnano.5b05728

10.1039/C5TA07586F

10.1039/C6NR00820H

10.1039/C6TA01900E

10.1038/nmat3700

10.1039/C4EE00370E

10.1038/ncomms4783

10.1021/ja503372r