Molten salts for rechargeable batteries
Tài liệu tham khảo
Lukatskaya, 2016, Nat. Commun., 7, 12647, 10.1038/ncomms12647
Luo, 2017, Adv. Sci., 4, 1700104, 10.1002/advs.201700104
Dunn, 2011, Science, 334, 928, 10.1126/science.1212741
Tarascon, 2001, Nature, 414, 359, 10.1038/35104644
Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Wang, 2008, Adv. Mater., 20, 2251, 10.1002/adma.200702242
Canepa, 2017, Chem. Rev., 117, 4287, 10.1021/acs.chemrev.6b00614
Su, 2016, Energy Storage Mater., 5, 116, 10.1016/j.ensm.2016.06.005
Yabuuchi, 2014, Chem. Rev., 114, 11636, 10.1021/cr500192f
Delmas, 2018, Adv. Energy Mater., 8, 1703137, 10.1002/aenm.201703137
Zhang, 2018, Adv. Mater., 30, e1706310, 10.1002/adma.201706310
Wang, 2017, Nat. Commun., 8, 14283, 10.1038/ncomms14283
Yang, 2019, Angew. Chem. Int. Ed., 58, 11978, 10.1002/anie.201814031
Licht, 2013, Energy Environ. Sci., 6, 3646, 10.1039/c3ee42654h
Kim, 2013, Chem. Rev., 113, 2075, 10.1021/cr300205k
Ding, 2010, Electrochem. Commun., 12, 10, 10.1016/j.elecom.2009.10.023
Choi, 2007, J. Power Sources, 163, 1064, 10.1016/j.jpowsour.2006.09.082
Lee, 2017, Nano Lett., 17, 1870, 10.1021/acs.nanolett.6b05191
Tarascon, 2010, Nat. Chem., 2, 510, 10.1038/nchem.680
Yaksic, 2009, Resour. Policy, 34, 185, 10.1016/j.resourpol.2009.05.002
Olivetti, 2017, Joule, 1, 229, 10.1016/j.joule.2017.08.019
Jaffe, 2017, Joule, 1, 225, 10.1016/j.joule.2017.09.021
Luo, 2012, Chem. Soc. Rev., 41, 4708, 10.1039/c2cs35083a
Danks, 2016, Mater. Horizons, 3, 91, 10.1039/C5MH00260E
Darr, 2017, Chem. Rev., 117, 11125, 10.1021/acs.chemrev.6b00417
Mohandas, 2003, Carbon, 41, 927, 10.1016/S0008-6223(02)00424-4
Lin, 2016, Chem. Soc. Rev., 45, 5848, 10.1039/C6CS00012F
Li, 2016, Adv. Energy Mater., 6, 1600483, 10.1002/aenm.201600483
Cui, 2014, J. Mater. Chem. A, 2, 10577, 10.1039/C4TA01290A
Bugaris, 2012, Angew. Chem. Int. Ed., 51, 3780, 10.1002/anie.201102676
Liu, 2013, Chem. Soc. Rev., 42, 8237, 10.1039/C3CS60159E
Vinnik, 2019, J. Magn. Magn. Mater., 470, 97, 10.1016/j.jmmm.2017.12.041
Vradman, 2017, J. Mater. Sci., 52, 11383, 10.1007/s10853-017-1332-y
Hayashi, 1986, J. Mater. Sci., 21, 757, 10.1007/BF01117350
Lou, 2014, Inorg. Chem., 53, 2053, 10.1021/ic402558t
Yang, 2018, Chem. Soc. Rev., 47, 2020, 10.1039/C7CS00464H
Armand, 2009, Nat. Mater., 8, 621, 10.1038/nmat2448
Lewandowski, 2009, J. Power Sources, 194, 601, 10.1016/j.jpowsour.2009.06.089
Wishart, 2009, Energ. Environ. Sci., 2, 956, 10.1039/b906273d
Eftekhari, 2017, Energy Storage Mater., 9, 47, 10.1016/j.ensm.2017.06.009
Liu, 2019, J. Mater. Sci. Technol., 35, 674, 10.1016/j.jmst.2018.10.007
Sundermeyer, 1965, Angew. Chem. Int. Ed., 4, 222, 10.1002/anie.196502221
Scheel, 1982, P Prog. Cryst. Growth. Ch., 5, 227
Huang, 2020, Adv. Funct. Mater., 30, 1908486, 10.1002/adfm.201908486
Xiao, 2020, Eur. J. Inorg. Chem., 2020, 2942, 10.1002/ejic.202000391
Le Brun, 2007, J. Nucl. Mater., 360, 1, 10.1016/j.jnucmat.2006.08.017
Serrano-López, 2013, Chem. Eng. Process., 73, 87, 10.1016/j.cep.2013.07.008
Nunes, 2016, Appl. Energ., 183, 603, 10.1016/j.apenergy.2016.09.003
LeBlanc, 2010, Nucl. Eng. Des., 240, 1644, 10.1016/j.nucengdes.2009.12.033
Inman, 1978, J. Appl. Electrochem., 8, 375, 10.1007/BF00615833
Blomgren, 1960, Annu. Rev. Phys. Chem., 11, 273, 10.1146/annurev.pc.11.100160.001421
Fu, 2020, J. Mater. Chem. C, 8, 8704, 10.1039/D0TC01924K
Li, 2016, Chem. Sci., 7, 855, 10.1039/C5SC03521J
Boltersdorf, 2015, CrystEngComm, 17, 2225, 10.1039/C4CE01587H
Johnson, 1958, J. Phys. Chem., 62, 604, 10.1021/j150563a021
Inman, 1966, Brit. Corros. J., 1, 246, 10.1179/000705966798327641
Howard, 1954, J. Am. Chem. Soc., 76, 2041, 10.1021/ja01637a003
Levy, 1960, Ann. N. Y. Acad. Sci., 79, 762, 10.1111/j.1749-6632.1960.tb42753.x
Mugavero, 2009, J. Solid State Chem., 182, 1950, 10.1016/j.jssc.2009.05.006
Park, 2002, Solid State Sci., 4, 799, 10.1016/S1293-2558(02)01328-6
Afanasiev, 1998, Coord. Chem. Rev., 1725, 10.1016/S0010-8545(98)00154-4
Gu, 2017, J. Alloys Compd., 690, 228, 10.1016/j.jallcom.2016.08.104
Chen, 2000, Nature, 407, 361, 10.1038/35030069
Peng, 2009, J. Mater. Chem., 19, 2803, 10.1039/b820560d
Gordo, 2004, Electrochim. Acta, 49, 2195, 10.1016/j.electacta.2003.12.045
Wu, 2008, Phys. Chem. Chem. Phys., 10, 1809, 10.1039/b719369f
Zhang, 2014, Electrochem. Commun., 38, 36, 10.1016/j.elecom.2013.10.030
Wu, 2007, Chem. Mater., 19, 153, 10.1021/cm0618648
Xiao, 2006, Chemphyschem, 7, 1750, 10.1002/cphc.200600149
Abdelkader, 2013, Chem. Rev., 113, 2863, 10.1021/cr200305x
Xiao, 2014, Chem. Soc. Rev., 43, 3215, 10.1039/c3cs60327j
Qu, 2018, ACS Appl. Energy Mater., 1, 6330, 10.1021/acsaem.8b01308
Yoshimura, 2007, J. Mater. Sci., 43, 2085, 10.1007/s10853-007-1853-x
Sōmiya, 2000, Bull. Mater. Sci., 23, 453, 10.1007/BF02903883
Sui, 2012, Chem. Rev., 112, 3057, 10.1021/cr2000465
Garcia, 2020, Chem. Mater., 32, 9126, 10.1021/acs.chemmater.0c01929
Wu, 2020, Adv. Mater., 33, 2001358, 10.1002/adma.202001358
Wang, 2020, Adv. Mater., 32, e1906070, 10.1002/adma.201906070
Kato, 2013, Catal. Sci. Technol., 3, 1733, 10.1039/c3cy00014a
Janz, 1958, Chem. Rev., 461, 10.1021/cr50021a002
Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c
Lyu, 2020, Adv. Energy Mater., 11, 2000982, 10.1002/aenm.202000982
Tang, 1998, Electrochem. Solid S. T., 1, 145, 10.1149/1.1390665
Liang, 2004, Electrochem. commun., 6, 505, 10.1016/j.elecom.2004.03.004
Teshima, 2010, Cryst. Growth Des., 10, 4471, 10.1021/cg100705d
Takahashi, 2007, Cryst. Growth Des., 7, 2491, 10.1021/cg070149n
Hong, 2000, Chem. Lett., 29, 1384, 10.1246/cl.2000.1384
Mizuno, 2014, Cryst. Growth Des., 14, 1882, 10.1021/cg5000217
Kim, 2016, J. Phys. Chem. C, 120, 18496, 10.1021/acs.jpcc.6b06279
Tan, 2005, J. Power Sources, 147, 241, 10.1016/j.jpowsour.2005.01.019
Reddy, 2007, J. Phys. Chem. C, 111, 11712, 10.1021/jp0676890
Shaju, 2002, Electrochem. commun., 4, 633, 10.1016/S1388-2481(02)00392-2
Reddy, 2013, J. Power Sources, 225, 374, 10.1016/j.jpowsour.2012.07.009
Li, 2021, J. Mater. Chem. A, 9, 19675, 10.1039/D1TA02351A
Chen, 2008, Adv. Mater., 20, 2206, 10.1002/adma.200702655
Zhang, 2017, Sci. Adv., 3, e1602427, 10.1126/sciadv.1602427
Zahiri, 2021, Nat. Mater., 20, 1392, 10.1038/s41563-021-01016-0
Patra, A., et al., Proc. Natl. Acad. Sci. U S A 118 (2021)**.
Zhang, 2018, Chem. Soc. Rev., 47, 7239, 10.1039/C8CS00297E
Li, 2012, J. Power Sources, 218, 21, 10.1016/j.jpowsour.2012.06.068
Li, 2009, Rare Metals, 28, 328, 10.1007/s12598-009-0064-9
Ferreira, 2009, J. Power Sources, 187, 238, 10.1016/j.jpowsour.2008.10.077
Li, 2016, J. Hazard. Mater., 302, 97, 10.1016/j.jhazmat.2015.09.050
Yang, 2020, Green Chem., 22, 6489, 10.1039/D0GC02662J
Zhao, 2019, J. Hazard. Mater., 379, 10.1016/j.jhazmat.2019.120817
Zhang, 2019, ACS Sustain. Chem. Eng., 7, 13391, 10.1021/acssuschemeng.9b02657
Tang, 2020, J. Power Sources, 474, 10.1016/j.jpowsour.2020.228596
Qu, 2020, ACS Sustain. Chem. Eng., 8, 6524, 10.1021/acssuschemeng.0c01205
Yang, 2021, Waste Manag., 129, 85, 10.1016/j.wasman.2021.04.052
Li, 2017, Adv. Mater., 29, 1701054, 10.1002/adma.201701054
Liu, 1999, J. Power Sources, 81–82, 416, 10.1016/S0378-7753(99)00221-9
T.O.A.Y. Makimura, Chem. Lett. 30, 642.
Yu, 2014, Energy Environ. Sci., 7, 1068, 10.1039/c3ee42398k
Yabuuchi, 2003, J. Power Sources, 119–121, 171, 10.1016/S0378-7753(03)00173-3
Hou, 2017, Small, 13
Pan, 2018, Mol. Syst. Des. Eng., 3, 748, 10.1039/C8ME00025E
Du, 2009, J. Alloys Compd., 476, 329, 10.1016/j.jallcom.2008.08.074
Kim, 2012, J. Mater. Chem., 22, 12874, 10.1039/c2jm31145c
Kim, 2012, ACS Appl. Mater. Interfaces, 4, 2329, 10.1021/am300386j
Zhu, 2019, J. Mater. Chem. A, 7, 5463, 10.1039/C8TA10329A
Kimijima, 2016, Cryst. Growth Des., 16, 2618, 10.1021/acs.cgd.5b01723
Kimijima, 2016, J. Mater. Chem. A, 4, 7289, 10.1039/C6TA01593J
Qian, 2020, Energy Storage Mater., 27, 140, 10.1016/j.ensm.2020.01.027
Lv, 2022, Small, 2201946, 10.1002/smll.202201946
Reddy, 2006, J. Power Sources, 159, 263, 10.1016/j.jpowsour.2006.04.134
M, S., Appl., 2017, Surf. Sci., 418, 72, 10.1016/j.apsusc.2017.01.248
Chang, 2009, Electrochim. Acta, 54, 6529, 10.1016/j.electacta.2009.06.013
Jiang, 2017, J. Alloys Compd., 691, 206, 10.1016/j.jallcom.2016.08.139
Yu, 2013, J. Phys. Chem. Lett., 4, 1268, 10.1021/jz400032v
Susai, 2018, Adv. Mater., 30, 1801348, 10.1002/adma.201801348
Yu, 2013, Angew. Chem. Int. Ed., 52, 5969, 10.1002/anie.201301236
Koga, 2012, J. Phys. Chem. C, 116, 13497, 10.1021/jp301879x
Hy, 2016, Energy Environ. Sci., 9, 1931, 10.1039/C5EE03573B
Yu, 2018, J. Am. Chem. Soc., 140, 15279, 10.1021/jacs.8b07858
Gent, 2017, Nat. Commun., 8, 2091, 10.1038/s41467-017-02041-x
Nayak, 2016, Adv. Energy Mater., 6, 1502398, 10.1002/aenm.201502398
Nayak, 2014, Electrochim. Acta, 137, 546, 10.1016/j.electacta.2014.06.055
Zhang, 2012, J. Mater. Chem., 22, 13104, 10.1039/c2jm30989k
Bareño, 2010, Adv. Mater., 22, 1122, 10.1002/adma.200904247
Liu, 2012, J. Mater. Chem., 22, 25380, 10.1039/c2jm35026b
Liu, 2014, J. Electrochem. Soc., 161, A160, 10.1149/2.079401jes
Shi, 2013, J. Power Sources, 241, 186, 10.1016/j.jpowsour.2013.04.125
Kuppan, 2017, Adv. Energy Mater., 7, 1602010, 10.1002/aenm.201602010
Peng, 2020, ACS Appl. Mater. Interfaces, 12, 11579, 10.1021/acsami.9b21271
Wang, 2020, ACS Appl. Mater. Interfaces, 12, 8306, 10.1021/acsami.9b21303
He, 2013, Nano Res., 7, 110, 10.1007/s12274-013-0378-7
Liu, 2014, Energy Environ. Sci., 7, 705, 10.1039/C3EE41664J
ZhenYao, 2014, RSC Adv., 4, 15825, 10.1039/c3ra47044j
Chen, 2012, J. Electrochem. Soc., 159, A1543, 10.1149/2.038209jes
Zheng, 2015, RSC Adv., 5, 58528, 10.1039/C5RA06419H
Zuo, 2018, Adv. Mater., 30, 1707255, 10.1002/adma.201707255
Shang, 2020, Nano Lett., 20, 5779, 10.1021/acs.nanolett.0c01640
Qing, 2016, Electrochim. Acta, 196, 749, 10.1016/j.electacta.2016.02.149
Qing, 2016, Adv. Energy Mater., 6, 1501914, 10.1002/aenm.201501914
Zhu, 2019, Nat. Energy, 4, 1049, 10.1038/s41560-019-0508-x
Zhu, 2020, Adv. Energy Mater., 2001120, 10.1002/aenm.202001120
Liu, 2022, Small, e2106337, 10.1002/smll.202106337
Ma, 2016, Chem. Mater., 28, 3578, 10.1021/acs.chemmater.6b00948
Potapenko, 2014, J. Energy Chem., 23, 543, 10.1016/S2095-4956(14)60184-4
Helan, 2010, Mater. Chem. Phys., 124, 439, 10.1016/j.matchemphys.2010.06.063
Zhao, 2012, RSC Adv., 2, 7462, 10.1039/c2ra01110g
Zettsu, 2016, CrystEngComm, 18, 2105, 10.1039/C5CE02547H
Wen, 2006, Electrochim. Acta, 51, 4388, 10.1016/j.electacta.2005.12.018
Kim, 2004, Electrochim. Acta, 49, 219, 10.1016/j.electacta.2003.07.003
Hai, 2013, J. Mater. Chem. A, 1, 759, 10.1039/C2TA00212D
Gong, 2011, Energy Environ. Sci., 4, 3223, 10.1039/c0ee00713g
Dimesso, 2012, Chem. Soc. Rev., 41, 5068, 10.1039/c2cs15320c
Ni, 2007, Mater. Lett., 61, 1260, 10.1016/j.matlet.2006.07.006
Fey, 2012, Electrochim. Acta, 80, 41, 10.1016/j.electacta.2012.06.125
Yamada, 2015, Cryst. Growth Des., 15, 3922, 10.1021/acs.cgd.5b00538
Yamada, 2017, CrystEngComm, 19, 93, 10.1039/C6CE02114J
Yamada, 2018, Cryst. Growth Des., 18, 6777, 10.1021/acs.cgd.8b01031
Partheeban, 2021, ACS Appl. Energy Mater., 4, 1387, 10.1021/acsaem.0c02622
Wei, 2017, Adv. Funct. Mater., 27, 1703270, 10.1002/adfm.201703270
Sun, 2013, Nat. Commun., 4, 1870, 10.1038/ncomms2878
Liu, 2017, Energy Environ. Sci., 10, 1456, 10.1039/C7EE00763A
Lu, 2018, Adv. Energy Mater., 8, 1702434, 10.1002/aenm.201702434
Tabassum, 2018, Adv. Mater., 30, 1705441, 10.1002/adma.201705441
Ohzuku, 1995, J. Electrochem. Soc., 142, 1431, 10.1149/1.2048592
Zhao, 2015, Mat. Sci. Eng. R., 98, 1, 10.1016/j.mser.2015.10.001
Yu, 2015, Angew. Chem. Int. Ed., 54, 4001, 10.1002/anie.201411353
Chen, 2014, Energy Environ. Sci., 7, 1924, 10.1039/c3ee42646g
Zhang, 2020, J. Electron. Mater., 49, 3883, 10.1007/s11664-020-08103-z
Reddy, 2014, Solid State Ionics, 262, 120, 10.1016/j.ssi.2013.11.030
Reddy, 2015, RSC Adv., 5, 29535, 10.1039/C5RA00206K
Ye, 2020, Mater. Lett., 277, 10.1016/j.matlet.2020.128357
Bai, 2008, Electrochim. Acta, 54, 322, 10.1016/j.electacta.2008.07.076
Xi, 2013, J. Power Sources, 242, 222, 10.1016/j.jpowsour.2013.04.020
Zettsu, 2014, Cryst. Growth Des., 14, 5634, 10.1021/cg5009279
Rahman, 2010, J. Power Sources, 195, 4297, 10.1016/j.jpowsour.2010.01.073
Sharmila, 2013, J. Phys. Chem. Solids, 74, 1515, 10.1016/j.jpcs.2013.04.021
Nithya, 2012, Appl. Surf. Sci., 261, 515, 10.1016/j.apsusc.2012.08.047
He, 2020, Adv. Funct. Mater., 30, 2001909, 10.1002/adfm.202001909
Kim, 2006, Adv. Funct. Mater., 16, 2393, 10.1002/adfm.200500911
Deng, 2015, Carbon, 93, 48, 10.1016/j.carbon.2015.05.031
Wu, 2003, J. Power Sources, 114, 228, 10.1016/S0378-7753(02)00596-7
He, 2019, Nano Today, 24, 103, 10.1016/j.nantod.2018.12.004
Irisarri, 2015, J. Electrochem. Soc., 162, A2476, 10.1149/2.0091514jes
Nitta, 2015, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040
Borenstein, 2017, J. Mater. Chem. A, 5, 12653, 10.1039/C7TA00863E
Liu, 2014, Carbon, 69, 460, 10.1016/j.carbon.2013.12.049
Li, 2019, Carbon, 141, 739, 10.1016/j.carbon.2018.09.061
Liu, 2014, Small, 10, 193, 10.1002/smll.201300812
Yu, 2017, Carbon, 117, 376, 10.1016/j.carbon.2017.02.100
He, 2015, J. Mater. Chem. A, 3, 579, 10.1039/C4TA05056H
Damodar, 2018, Dalton Trans, 47, 12218, 10.1039/C8DT01787E
Wang, 2018, ACS Appl Mater Interfaces, 10, 5577, 10.1021/acsami.7b18313
Kamali, 2015, J. Mater. Sci., 51, 569, 10.1007/s10853-015-9340-2
Tang, 2017, J. Power Sources, 341, 419, 10.1016/j.jpowsour.2016.12.037
Zhao, 2019, Batteries & Supercaps, 2, 1007, 10.1002/batt.201900091
Peng, 2017, Angew. Chem. Int. Ed., 56, 1, 10.1002/anie.201610955
Limthongkul, 2003, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1
Liu, 2011, Nano Lett., 11, 3312, 10.1021/nl201684d
Wu, 2016, Angew. Chem. Int. Ed., 55, 7898, 10.1002/anie.201509651
Wu, 2013, Chem. Asian J., 8, 1948, 10.1002/asia.201300279
Zhao, 2015, J. Power Sources, 274, 869, 10.1016/j.jpowsour.2014.10.008
Liu, 2016, J. Power Sources, 321, 11, 10.1016/j.jpowsour.2016.04.105
Jung, 2015, Chem. Mater., 27, 1031, 10.1021/cm504312x
Liu, 2017, Small, 13, 1702000, 10.1002/smll.201702000
Sheng, 2016, Acc. Chem. Res., 2569, 10.1021/acs.accounts.6b00485
McDowell, 2013, Adv. Mater., 25, 4966, 10.1002/adma.201301795
Deng, 2013, Angew. Chem. Int. Ed., 52, 2326, 10.1002/anie.201208357
Kobayashi, 2016, J. Power Sources, 326, 235, 10.1016/j.jpowsour.2016.06.117
Nagamori, 1986, Metall. Trans. B, 17, 503, 10.1007/BF02670216
Liu, 2012, J. Mater. Chem., 22, 5454, 10.1039/c2jm15453f
Juzeliu Nas, 2020, Chem. Rev., 120, 1690, 10.1021/acs.chemrev.9b00428
Zou, 2017, J. Am. Chem. Soc., 139, 16060, 10.1021/jacs.7b09090
Lin, 2015, Angew. Chem. Int. Ed., 54, 3822, 10.1002/anie.201411830
Lin, 2015, Energy Environ. Sci., 8, 3187, 10.1039/C5EE02487K
Song, 2018, Commun. Chem., 1, 42, 10.1038/s42004-018-0041-z
Wang, 2015, Chem. Commun., 51, 2345, 10.1039/C4CC09233C
Wan, 2018, Dalton. Trans., 47, 7522, 10.1039/C8DT01242C
Kong, 2019, Sci. Bull., 64, 261, 10.1016/j.scib.2019.01.015
Ryu, 2016, ACS Nano, 10, 2843, 10.1021/acsnano.5b07977
Cui, 2019, J. Mater. Chem. A, 7, 3874, 10.1039/C8TA11684A
Gao, 2018, ACS Nano, 12, 11481, 10.1021/acsnano.8b06528
Nohira, 2003, Nat. Mater., 2, 397, 10.1038/nmat900
Yang, 2009, Chem. Commun., 3273, 10.1039/b902029b
Weng, 2018, ACS Appl. Energy Mater., 2, 804, 10.1021/acsaem.8b01870
Zhang, 2020, J. Energy Chem., 40, 171, 10.1016/j.jechem.2019.04.014
Cai, 2020, ACS Sustain. Chem. Eng., 8, 9866, 10.1021/acssuschemeng.0c02944
Dong, 2017, Angew. Chem. Int. Ed., 56, 14453, 10.1002/anie.201707064
Wang, 2021, ACS Appl. Mater. Interfaces, 13, 30668, 10.1021/acsami.1c07031
Wang, 2021, ACS Appl. Nano Mater., 4, 7028, 10.1021/acsanm.1c01061
Yuan, 2018, Angew. Chem. Int. Ed., 57, 15743, 10.1002/anie.201809646
Ma, 2021, Energy Storage Mater., 34, 768, 10.1016/j.ensm.2020.10.021
Ma, 2022, J. Mater. Chem. A, 10, 10004, 10.1039/D2TA01342H
Ma, 2021, Mater. Today Energy, 21
Park, 2010, Chem Soc Rev, 39, 3115, 10.1039/b919877f
Baggetto, 2013, Electrochem. Commun., 34, 41, 10.1016/j.elecom.2013.05.025
Yin, 2013, Electrochim. Acta, 102, 369, 10.1016/j.electacta.2013.04.026
Rong, 2014, Electrochim. Acta, 147, 352, 10.1016/j.electacta.2014.09.107
Yin, 2015, J. Mater. Chem. A, 3, 1427, 10.1039/C4TA05244G
Liu, 2018, Dalton Trans., 47, 7402, 10.1039/C8DT01060A
Lin, 2015, J. Mater. Chem. A, 3, 11199, 10.1039/C5TA02216A
Xiao, 2016, Angew. Chem. Int. Ed., 55, 7427, 10.1002/anie.201602653
Wang, 2012, Mater. Today, 15, 544, 10.1016/S1369-7021(13)70012-9
Das Gupta, 2014, Carbon, 70, 142, 10.1016/j.carbon.2013.12.084
Das Gupta, 2016, Metall. Mater. Trans. E, 4, 22
Reddy, 2013, Chem. Rev., 113, 5364, 10.1021/cr3001884
Wu, 2012, Nanoscale, 4, 2526, 10.1039/c2nr11966h
Poizot, 2000, Nature, 407, 496, 10.1038/35035045
Zhao, 2016, Adv. Energy Mater., 6, 1502175, 10.1002/aenm.201502175
Bruce, 2008, Angew. Chem. Int. Ed. Engl., 47, 2930, 10.1002/anie.200702505
Reddy, 2011, Electrochem. Solid-State Lett., 14, A79, 10.1149/1.3556984
Reddy, 2015, ACS Sustain. Chem. Eng., 3, 3035, 10.1021/acssuschemeng.5b00439
Reddy, 2013, ACS Appl. Mater Interfaces, 5, 4361, 10.1021/am400579q
Reddy, 2012, RSC Adv., 2, 9619, 10.1039/c2ra21033a
Reddy, 2015, Mater. Lett., 140, 115, 10.1016/j.matlet.2014.10.145
Senthilkumar, 2011, Mater. Chem. Phys., 130, 285, 10.1016/j.matchemphys.2011.06.043
Huang, 2015, Chemistry, 21, 14140, 10.1002/chem.201500910
Wang, 2016, Chem. Rev., 116, 10983, 10.1021/acs.chemrev.5b00731
Li, 2015, Cryst. Growth Des., 16, 34, 10.1021/acs.cgd.5b00670
Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138
Tang, 2012, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r
Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Ghidiu, 2014, Nature, 516, 78, 10.1038/nature13970
Li, 2019, J. Am. Chem. Soc., 141, 4730, 10.1021/jacs.9b00574
Li, 2020, Nat. Mater., 19, 894, 10.1038/s41563-020-0657-0
Song, 2017, J. Mater. Chem. A, 5, 1282, 10.1039/C6TA09829K
Ferrari, 2015, Nanoscale, 7, 4598, 10.1039/C4NR01600A
Sun, 2015, Chem. Commun., 51, 11892, 10.1039/C5CC00542F
Holleck, 1972, J. Electrochem. Soc., 119, 1161, 10.1149/1.2404433
Jiguo, 2017, J. Electrochem. Soc., 164, A3292, 10.1149/2.1761713jes
Yu, 2019, ChemistrySelect, 4, 3018, 10.1002/slct.201900374
Zhang, 2018, J. Mater. Chem. A, 6, 3084, 10.1039/C7TA10632G
Zhang, 2019, Energy Environ. Sci., 12, 1918, 10.1039/C9EE00862D
Tu, 2019, J. Alloys Compd.
Torst, 1972, Inorg. Chem., 12, 1439, 10.1021/ic50112a059
Wang, 2019, Chem Commun, 55, 2138, 10.1039/C8CC09677E
Sakai, 2016, Nano Lett., 3242, 10.1021/acs.nanolett.6b00741
Bronstein, 1958, J. Am. Chem. Soc., 80, 2077, 10.1021/ja01542a014
Haarberg, 1989, J. Appl. Electrochem., 19, 789, 10.1007/BF01007924
Haarberg, 1990, J. Electrochem. Soc., 137, 2777, 10.1149/1.2087070
Ning, 2015, J. Power Sources, 275, 370, 10.1016/j.jpowsour.2014.10.173
Kim, 2018, J. Power Sources, 377, 87, 10.1016/j.jpowsour.2017.11.081
Wang, 2019, Energies, 12, 183, 10.3390/en12010183
Yin, 2018, Nat. Energy, 3, 127, 10.1038/s41560-017-0072-1
Kim, 2013, J. Power Sources, 241, 239, 10.1016/j.jpowsour.2013.04.052
Bradwell, 2012, J. Am. Chem. Soc., 134, 1895, 10.1021/ja209759s
Zhou, 2022, Energy Storage Mater., 50, 572, 10.1016/j.ensm.2022.05.032
Van Artsdalen, 1955, J. Phys. Chem., 59, 118, 10.1021/j150524a007
Johnson, 1971, J. Electrochem. Soc., 118, 631, 10.1149/1.2408125
Weppner, 1978, J. Electrochem. Soc., 125, 7, 10.1149/1.2131401
Liu, 2018, J. Mater. Chem. A, 6, 8159, 10.1039/C8TA01782D
Wang, 2014, Nature, 514, 348, 10.1038/nature13700
Li, 2021, J. Clean. Prod., 312
Guidotti, 2006, J. Power Sources, 161, 1443, 10.1016/j.jpowsour.2006.06.013
Ouchi, 2014, J. Electrochem. Soc., 161, A1898, 10.1149/2.0801412jes
Liu, 2015, J. Mater. Chem. A, 3, 21039, 10.1039/C5TA06069A
Ren, 2015, Nano Lett., 15, 6142, 10.1021/acs.nanolett.5b02427
Cui, 2017, Sustain. Energy Fuels, 1, 474, 10.1039/C6SE00082G
Cui, 2018, J. Electrochem. Soc., 165, A235, 10.1149/2.0821802jes
Moorhouse, 2016, Chem. Commun., 52, 13865, 10.1039/C6CC08133A
Moorhouse, 2012, Rev. Sci. Instrum., 83, 10.1063/1.4746382
H. Jiao, et al., Sci. Adv. 8 (2022), eabm5678.
Chen, 2022, Cell Rep. Phys. Sci., 3