Molten salts for rechargeable batteries

Materials Today - Tập 60 - Trang 128-157 - 2022
Huan Liu1,2, Xu Zhang1,2, Shiman He1,2, Di He1,2, Yang Shang1,2, Haijun Yu1,2
1Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, PR China
2Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, PR China

Tài liệu tham khảo

Lukatskaya, 2016, Nat. Commun., 7, 12647, 10.1038/ncomms12647 Luo, 2017, Adv. Sci., 4, 1700104, 10.1002/advs.201700104 Dunn, 2011, Science, 334, 928, 10.1126/science.1212741 Tarascon, 2001, Nature, 414, 359, 10.1038/35104644 Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b Wang, 2008, Adv. Mater., 20, 2251, 10.1002/adma.200702242 Canepa, 2017, Chem. Rev., 117, 4287, 10.1021/acs.chemrev.6b00614 Su, 2016, Energy Storage Mater., 5, 116, 10.1016/j.ensm.2016.06.005 Yabuuchi, 2014, Chem. Rev., 114, 11636, 10.1021/cr500192f Delmas, 2018, Adv. Energy Mater., 8, 1703137, 10.1002/aenm.201703137 Zhang, 2018, Adv. Mater., 30, e1706310, 10.1002/adma.201706310 Wang, 2017, Nat. Commun., 8, 14283, 10.1038/ncomms14283 Yang, 2019, Angew. Chem. Int. Ed., 58, 11978, 10.1002/anie.201814031 Licht, 2013, Energy Environ. Sci., 6, 3646, 10.1039/c3ee42654h Kim, 2013, Chem. Rev., 113, 2075, 10.1021/cr300205k Ding, 2010, Electrochem. Commun., 12, 10, 10.1016/j.elecom.2009.10.023 Choi, 2007, J. Power Sources, 163, 1064, 10.1016/j.jpowsour.2006.09.082 Lee, 2017, Nano Lett., 17, 1870, 10.1021/acs.nanolett.6b05191 Tarascon, 2010, Nat. Chem., 2, 510, 10.1038/nchem.680 Yaksic, 2009, Resour. Policy, 34, 185, 10.1016/j.resourpol.2009.05.002 Olivetti, 2017, Joule, 1, 229, 10.1016/j.joule.2017.08.019 Jaffe, 2017, Joule, 1, 225, 10.1016/j.joule.2017.09.021 Luo, 2012, Chem. Soc. Rev., 41, 4708, 10.1039/c2cs35083a Danks, 2016, Mater. Horizons, 3, 91, 10.1039/C5MH00260E Darr, 2017, Chem. Rev., 117, 11125, 10.1021/acs.chemrev.6b00417 Mohandas, 2003, Carbon, 41, 927, 10.1016/S0008-6223(02)00424-4 Lin, 2016, Chem. Soc. Rev., 45, 5848, 10.1039/C6CS00012F Li, 2016, Adv. Energy Mater., 6, 1600483, 10.1002/aenm.201600483 Cui, 2014, J. Mater. Chem. A, 2, 10577, 10.1039/C4TA01290A Bugaris, 2012, Angew. Chem. Int. Ed., 51, 3780, 10.1002/anie.201102676 Liu, 2013, Chem. Soc. Rev., 42, 8237, 10.1039/C3CS60159E Vinnik, 2019, J. Magn. Magn. Mater., 470, 97, 10.1016/j.jmmm.2017.12.041 Vradman, 2017, J. Mater. Sci., 52, 11383, 10.1007/s10853-017-1332-y Hayashi, 1986, J. Mater. Sci., 21, 757, 10.1007/BF01117350 Lou, 2014, Inorg. Chem., 53, 2053, 10.1021/ic402558t Yang, 2018, Chem. Soc. Rev., 47, 2020, 10.1039/C7CS00464H Armand, 2009, Nat. Mater., 8, 621, 10.1038/nmat2448 Lewandowski, 2009, J. Power Sources, 194, 601, 10.1016/j.jpowsour.2009.06.089 Wishart, 2009, Energ. Environ. Sci., 2, 956, 10.1039/b906273d Eftekhari, 2017, Energy Storage Mater., 9, 47, 10.1016/j.ensm.2017.06.009 Liu, 2019, J. Mater. Sci. Technol., 35, 674, 10.1016/j.jmst.2018.10.007 Sundermeyer, 1965, Angew. Chem. Int. Ed., 4, 222, 10.1002/anie.196502221 Scheel, 1982, P Prog. Cryst. Growth. Ch., 5, 227 Huang, 2020, Adv. Funct. Mater., 30, 1908486, 10.1002/adfm.201908486 Xiao, 2020, Eur. J. Inorg. Chem., 2020, 2942, 10.1002/ejic.202000391 Le Brun, 2007, J. Nucl. Mater., 360, 1, 10.1016/j.jnucmat.2006.08.017 Serrano-López, 2013, Chem. Eng. Process., 73, 87, 10.1016/j.cep.2013.07.008 Nunes, 2016, Appl. Energ., 183, 603, 10.1016/j.apenergy.2016.09.003 LeBlanc, 2010, Nucl. Eng. Des., 240, 1644, 10.1016/j.nucengdes.2009.12.033 Inman, 1978, J. Appl. Electrochem., 8, 375, 10.1007/BF00615833 Blomgren, 1960, Annu. Rev. Phys. Chem., 11, 273, 10.1146/annurev.pc.11.100160.001421 Fu, 2020, J. Mater. Chem. C, 8, 8704, 10.1039/D0TC01924K Li, 2016, Chem. Sci., 7, 855, 10.1039/C5SC03521J Boltersdorf, 2015, CrystEngComm, 17, 2225, 10.1039/C4CE01587H Johnson, 1958, J. Phys. Chem., 62, 604, 10.1021/j150563a021 Inman, 1966, Brit. Corros. J., 1, 246, 10.1179/000705966798327641 Howard, 1954, J. Am. Chem. Soc., 76, 2041, 10.1021/ja01637a003 Levy, 1960, Ann. N. Y. Acad. Sci., 79, 762, 10.1111/j.1749-6632.1960.tb42753.x Mugavero, 2009, J. Solid State Chem., 182, 1950, 10.1016/j.jssc.2009.05.006 Park, 2002, Solid State Sci., 4, 799, 10.1016/S1293-2558(02)01328-6 Afanasiev, 1998, Coord. Chem. Rev., 1725, 10.1016/S0010-8545(98)00154-4 Gu, 2017, J. Alloys Compd., 690, 228, 10.1016/j.jallcom.2016.08.104 Chen, 2000, Nature, 407, 361, 10.1038/35030069 Peng, 2009, J. Mater. Chem., 19, 2803, 10.1039/b820560d Gordo, 2004, Electrochim. Acta, 49, 2195, 10.1016/j.electacta.2003.12.045 Wu, 2008, Phys. Chem. Chem. Phys., 10, 1809, 10.1039/b719369f Zhang, 2014, Electrochem. Commun., 38, 36, 10.1016/j.elecom.2013.10.030 Wu, 2007, Chem. Mater., 19, 153, 10.1021/cm0618648 Xiao, 2006, Chemphyschem, 7, 1750, 10.1002/cphc.200600149 Abdelkader, 2013, Chem. Rev., 113, 2863, 10.1021/cr200305x Xiao, 2014, Chem. Soc. Rev., 43, 3215, 10.1039/c3cs60327j Qu, 2018, ACS Appl. Energy Mater., 1, 6330, 10.1021/acsaem.8b01308 Yoshimura, 2007, J. Mater. Sci., 43, 2085, 10.1007/s10853-007-1853-x Sōmiya, 2000, Bull. Mater. Sci., 23, 453, 10.1007/BF02903883 Sui, 2012, Chem. Rev., 112, 3057, 10.1021/cr2000465 Garcia, 2020, Chem. Mater., 32, 9126, 10.1021/acs.chemmater.0c01929 Wu, 2020, Adv. Mater., 33, 2001358, 10.1002/adma.202001358 Wang, 2020, Adv. Mater., 32, e1906070, 10.1002/adma.201906070 Kato, 2013, Catal. Sci. Technol., 3, 1733, 10.1039/c3cy00014a Janz, 1958, Chem. Rev., 461, 10.1021/cr50021a002 Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c Lyu, 2020, Adv. Energy Mater., 11, 2000982, 10.1002/aenm.202000982 Tang, 1998, Electrochem. Solid S. T., 1, 145, 10.1149/1.1390665 Liang, 2004, Electrochem. commun., 6, 505, 10.1016/j.elecom.2004.03.004 Teshima, 2010, Cryst. Growth Des., 10, 4471, 10.1021/cg100705d Takahashi, 2007, Cryst. Growth Des., 7, 2491, 10.1021/cg070149n Hong, 2000, Chem. Lett., 29, 1384, 10.1246/cl.2000.1384 Mizuno, 2014, Cryst. Growth Des., 14, 1882, 10.1021/cg5000217 Kim, 2016, J. Phys. Chem. C, 120, 18496, 10.1021/acs.jpcc.6b06279 Tan, 2005, J. Power Sources, 147, 241, 10.1016/j.jpowsour.2005.01.019 Reddy, 2007, J. Phys. Chem. C, 111, 11712, 10.1021/jp0676890 Shaju, 2002, Electrochem. commun., 4, 633, 10.1016/S1388-2481(02)00392-2 Reddy, 2013, J. Power Sources, 225, 374, 10.1016/j.jpowsour.2012.07.009 Li, 2021, J. Mater. Chem. A, 9, 19675, 10.1039/D1TA02351A Chen, 2008, Adv. Mater., 20, 2206, 10.1002/adma.200702655 Zhang, 2017, Sci. Adv., 3, e1602427, 10.1126/sciadv.1602427 Zahiri, 2021, Nat. Mater., 20, 1392, 10.1038/s41563-021-01016-0 Patra, A., et al., Proc. Natl. Acad. Sci. U S A 118 (2021)**. Zhang, 2018, Chem. Soc. Rev., 47, 7239, 10.1039/C8CS00297E Li, 2012, J. Power Sources, 218, 21, 10.1016/j.jpowsour.2012.06.068 Li, 2009, Rare Metals, 28, 328, 10.1007/s12598-009-0064-9 Ferreira, 2009, J. Power Sources, 187, 238, 10.1016/j.jpowsour.2008.10.077 Li, 2016, J. Hazard. Mater., 302, 97, 10.1016/j.jhazmat.2015.09.050 Yang, 2020, Green Chem., 22, 6489, 10.1039/D0GC02662J Zhao, 2019, J. Hazard. Mater., 379, 10.1016/j.jhazmat.2019.120817 Zhang, 2019, ACS Sustain. Chem. Eng., 7, 13391, 10.1021/acssuschemeng.9b02657 Tang, 2020, J. Power Sources, 474, 10.1016/j.jpowsour.2020.228596 Qu, 2020, ACS Sustain. Chem. Eng., 8, 6524, 10.1021/acssuschemeng.0c01205 Yang, 2021, Waste Manag., 129, 85, 10.1016/j.wasman.2021.04.052 Li, 2017, Adv. Mater., 29, 1701054, 10.1002/adma.201701054 Liu, 1999, J. Power Sources, 81–82, 416, 10.1016/S0378-7753(99)00221-9 T.O.A.Y. Makimura, Chem. Lett. 30, 642. Yu, 2014, Energy Environ. Sci., 7, 1068, 10.1039/c3ee42398k Yabuuchi, 2003, J. Power Sources, 119–121, 171, 10.1016/S0378-7753(03)00173-3 Hou, 2017, Small, 13 Pan, 2018, Mol. Syst. Des. Eng., 3, 748, 10.1039/C8ME00025E Du, 2009, J. Alloys Compd., 476, 329, 10.1016/j.jallcom.2008.08.074 Kim, 2012, J. Mater. Chem., 22, 12874, 10.1039/c2jm31145c Kim, 2012, ACS Appl. Mater. Interfaces, 4, 2329, 10.1021/am300386j Zhu, 2019, J. Mater. Chem. A, 7, 5463, 10.1039/C8TA10329A Kimijima, 2016, Cryst. Growth Des., 16, 2618, 10.1021/acs.cgd.5b01723 Kimijima, 2016, J. Mater. Chem. A, 4, 7289, 10.1039/C6TA01593J Qian, 2020, Energy Storage Mater., 27, 140, 10.1016/j.ensm.2020.01.027 Lv, 2022, Small, 2201946, 10.1002/smll.202201946 Reddy, 2006, J. Power Sources, 159, 263, 10.1016/j.jpowsour.2006.04.134 M, S., Appl., 2017, Surf. Sci., 418, 72, 10.1016/j.apsusc.2017.01.248 Chang, 2009, Electrochim. Acta, 54, 6529, 10.1016/j.electacta.2009.06.013 Jiang, 2017, J. Alloys Compd., 691, 206, 10.1016/j.jallcom.2016.08.139 Yu, 2013, J. Phys. Chem. Lett., 4, 1268, 10.1021/jz400032v Susai, 2018, Adv. Mater., 30, 1801348, 10.1002/adma.201801348 Yu, 2013, Angew. Chem. Int. Ed., 52, 5969, 10.1002/anie.201301236 Koga, 2012, J. Phys. Chem. C, 116, 13497, 10.1021/jp301879x Hy, 2016, Energy Environ. Sci., 9, 1931, 10.1039/C5EE03573B Yu, 2018, J. Am. Chem. Soc., 140, 15279, 10.1021/jacs.8b07858 Gent, 2017, Nat. Commun., 8, 2091, 10.1038/s41467-017-02041-x Nayak, 2016, Adv. Energy Mater., 6, 1502398, 10.1002/aenm.201502398 Nayak, 2014, Electrochim. Acta, 137, 546, 10.1016/j.electacta.2014.06.055 Zhang, 2012, J. Mater. Chem., 22, 13104, 10.1039/c2jm30989k Bareño, 2010, Adv. Mater., 22, 1122, 10.1002/adma.200904247 Liu, 2012, J. Mater. Chem., 22, 25380, 10.1039/c2jm35026b Liu, 2014, J. Electrochem. Soc., 161, A160, 10.1149/2.079401jes Shi, 2013, J. Power Sources, 241, 186, 10.1016/j.jpowsour.2013.04.125 Kuppan, 2017, Adv. Energy Mater., 7, 1602010, 10.1002/aenm.201602010 Peng, 2020, ACS Appl. Mater. Interfaces, 12, 11579, 10.1021/acsami.9b21271 Wang, 2020, ACS Appl. Mater. Interfaces, 12, 8306, 10.1021/acsami.9b21303 He, 2013, Nano Res., 7, 110, 10.1007/s12274-013-0378-7 Liu, 2014, Energy Environ. Sci., 7, 705, 10.1039/C3EE41664J ZhenYao, 2014, RSC Adv., 4, 15825, 10.1039/c3ra47044j Chen, 2012, J. Electrochem. Soc., 159, A1543, 10.1149/2.038209jes Zheng, 2015, RSC Adv., 5, 58528, 10.1039/C5RA06419H Zuo, 2018, Adv. Mater., 30, 1707255, 10.1002/adma.201707255 Shang, 2020, Nano Lett., 20, 5779, 10.1021/acs.nanolett.0c01640 Qing, 2016, Electrochim. Acta, 196, 749, 10.1016/j.electacta.2016.02.149 Qing, 2016, Adv. Energy Mater., 6, 1501914, 10.1002/aenm.201501914 Zhu, 2019, Nat. Energy, 4, 1049, 10.1038/s41560-019-0508-x Zhu, 2020, Adv. Energy Mater., 2001120, 10.1002/aenm.202001120 Liu, 2022, Small, e2106337, 10.1002/smll.202106337 Ma, 2016, Chem. Mater., 28, 3578, 10.1021/acs.chemmater.6b00948 Potapenko, 2014, J. Energy Chem., 23, 543, 10.1016/S2095-4956(14)60184-4 Helan, 2010, Mater. Chem. Phys., 124, 439, 10.1016/j.matchemphys.2010.06.063 Zhao, 2012, RSC Adv., 2, 7462, 10.1039/c2ra01110g Zettsu, 2016, CrystEngComm, 18, 2105, 10.1039/C5CE02547H Wen, 2006, Electrochim. Acta, 51, 4388, 10.1016/j.electacta.2005.12.018 Kim, 2004, Electrochim. Acta, 49, 219, 10.1016/j.electacta.2003.07.003 Hai, 2013, J. Mater. Chem. A, 1, 759, 10.1039/C2TA00212D Gong, 2011, Energy Environ. Sci., 4, 3223, 10.1039/c0ee00713g Dimesso, 2012, Chem. Soc. Rev., 41, 5068, 10.1039/c2cs15320c Ni, 2007, Mater. Lett., 61, 1260, 10.1016/j.matlet.2006.07.006 Fey, 2012, Electrochim. Acta, 80, 41, 10.1016/j.electacta.2012.06.125 Yamada, 2015, Cryst. Growth Des., 15, 3922, 10.1021/acs.cgd.5b00538 Yamada, 2017, CrystEngComm, 19, 93, 10.1039/C6CE02114J Yamada, 2018, Cryst. Growth Des., 18, 6777, 10.1021/acs.cgd.8b01031 Partheeban, 2021, ACS Appl. Energy Mater., 4, 1387, 10.1021/acsaem.0c02622 Wei, 2017, Adv. Funct. Mater., 27, 1703270, 10.1002/adfm.201703270 Sun, 2013, Nat. Commun., 4, 1870, 10.1038/ncomms2878 Liu, 2017, Energy Environ. Sci., 10, 1456, 10.1039/C7EE00763A Lu, 2018, Adv. Energy Mater., 8, 1702434, 10.1002/aenm.201702434 Tabassum, 2018, Adv. Mater., 30, 1705441, 10.1002/adma.201705441 Ohzuku, 1995, J. Electrochem. Soc., 142, 1431, 10.1149/1.2048592 Zhao, 2015, Mat. Sci. Eng. R., 98, 1, 10.1016/j.mser.2015.10.001 Yu, 2015, Angew. Chem. Int. Ed., 54, 4001, 10.1002/anie.201411353 Chen, 2014, Energy Environ. Sci., 7, 1924, 10.1039/c3ee42646g Zhang, 2020, J. Electron. Mater., 49, 3883, 10.1007/s11664-020-08103-z Reddy, 2014, Solid State Ionics, 262, 120, 10.1016/j.ssi.2013.11.030 Reddy, 2015, RSC Adv., 5, 29535, 10.1039/C5RA00206K Ye, 2020, Mater. Lett., 277, 10.1016/j.matlet.2020.128357 Bai, 2008, Electrochim. Acta, 54, 322, 10.1016/j.electacta.2008.07.076 Xi, 2013, J. Power Sources, 242, 222, 10.1016/j.jpowsour.2013.04.020 Zettsu, 2014, Cryst. Growth Des., 14, 5634, 10.1021/cg5009279 Rahman, 2010, J. Power Sources, 195, 4297, 10.1016/j.jpowsour.2010.01.073 Sharmila, 2013, J. Phys. Chem. Solids, 74, 1515, 10.1016/j.jpcs.2013.04.021 Nithya, 2012, Appl. Surf. Sci., 261, 515, 10.1016/j.apsusc.2012.08.047 He, 2020, Adv. Funct. Mater., 30, 2001909, 10.1002/adfm.202001909 Kim, 2006, Adv. Funct. Mater., 16, 2393, 10.1002/adfm.200500911 Deng, 2015, Carbon, 93, 48, 10.1016/j.carbon.2015.05.031 Wu, 2003, J. Power Sources, 114, 228, 10.1016/S0378-7753(02)00596-7 He, 2019, Nano Today, 24, 103, 10.1016/j.nantod.2018.12.004 Irisarri, 2015, J. Electrochem. Soc., 162, A2476, 10.1149/2.0091514jes Nitta, 2015, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040 Borenstein, 2017, J. Mater. Chem. A, 5, 12653, 10.1039/C7TA00863E Liu, 2014, Carbon, 69, 460, 10.1016/j.carbon.2013.12.049 Li, 2019, Carbon, 141, 739, 10.1016/j.carbon.2018.09.061 Liu, 2014, Small, 10, 193, 10.1002/smll.201300812 Yu, 2017, Carbon, 117, 376, 10.1016/j.carbon.2017.02.100 He, 2015, J. Mater. Chem. A, 3, 579, 10.1039/C4TA05056H Damodar, 2018, Dalton Trans, 47, 12218, 10.1039/C8DT01787E Wang, 2018, ACS Appl Mater Interfaces, 10, 5577, 10.1021/acsami.7b18313 Kamali, 2015, J. Mater. Sci., 51, 569, 10.1007/s10853-015-9340-2 Tang, 2017, J. Power Sources, 341, 419, 10.1016/j.jpowsour.2016.12.037 Zhao, 2019, Batteries & Supercaps, 2, 1007, 10.1002/batt.201900091 Peng, 2017, Angew. Chem. Int. Ed., 56, 1, 10.1002/anie.201610955 Limthongkul, 2003, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1 Liu, 2011, Nano Lett., 11, 3312, 10.1021/nl201684d Wu, 2016, Angew. Chem. Int. Ed., 55, 7898, 10.1002/anie.201509651 Wu, 2013, Chem. Asian J., 8, 1948, 10.1002/asia.201300279 Zhao, 2015, J. Power Sources, 274, 869, 10.1016/j.jpowsour.2014.10.008 Liu, 2016, J. Power Sources, 321, 11, 10.1016/j.jpowsour.2016.04.105 Jung, 2015, Chem. Mater., 27, 1031, 10.1021/cm504312x Liu, 2017, Small, 13, 1702000, 10.1002/smll.201702000 Sheng, 2016, Acc. Chem. Res., 2569, 10.1021/acs.accounts.6b00485 McDowell, 2013, Adv. Mater., 25, 4966, 10.1002/adma.201301795 Deng, 2013, Angew. Chem. Int. Ed., 52, 2326, 10.1002/anie.201208357 Kobayashi, 2016, J. Power Sources, 326, 235, 10.1016/j.jpowsour.2016.06.117 Nagamori, 1986, Metall. Trans. B, 17, 503, 10.1007/BF02670216 Liu, 2012, J. Mater. Chem., 22, 5454, 10.1039/c2jm15453f Juzeliu Nas, 2020, Chem. Rev., 120, 1690, 10.1021/acs.chemrev.9b00428 Zou, 2017, J. Am. Chem. Soc., 139, 16060, 10.1021/jacs.7b09090 Lin, 2015, Angew. Chem. Int. Ed., 54, 3822, 10.1002/anie.201411830 Lin, 2015, Energy Environ. Sci., 8, 3187, 10.1039/C5EE02487K Song, 2018, Commun. Chem., 1, 42, 10.1038/s42004-018-0041-z Wang, 2015, Chem. Commun., 51, 2345, 10.1039/C4CC09233C Wan, 2018, Dalton. Trans., 47, 7522, 10.1039/C8DT01242C Kong, 2019, Sci. Bull., 64, 261, 10.1016/j.scib.2019.01.015 Ryu, 2016, ACS Nano, 10, 2843, 10.1021/acsnano.5b07977 Cui, 2019, J. Mater. Chem. A, 7, 3874, 10.1039/C8TA11684A Gao, 2018, ACS Nano, 12, 11481, 10.1021/acsnano.8b06528 Nohira, 2003, Nat. Mater., 2, 397, 10.1038/nmat900 Yang, 2009, Chem. Commun., 3273, 10.1039/b902029b Weng, 2018, ACS Appl. Energy Mater., 2, 804, 10.1021/acsaem.8b01870 Zhang, 2020, J. Energy Chem., 40, 171, 10.1016/j.jechem.2019.04.014 Cai, 2020, ACS Sustain. Chem. Eng., 8, 9866, 10.1021/acssuschemeng.0c02944 Dong, 2017, Angew. Chem. Int. Ed., 56, 14453, 10.1002/anie.201707064 Wang, 2021, ACS Appl. Mater. Interfaces, 13, 30668, 10.1021/acsami.1c07031 Wang, 2021, ACS Appl. Nano Mater., 4, 7028, 10.1021/acsanm.1c01061 Yuan, 2018, Angew. Chem. Int. Ed., 57, 15743, 10.1002/anie.201809646 Ma, 2021, Energy Storage Mater., 34, 768, 10.1016/j.ensm.2020.10.021 Ma, 2022, J. Mater. Chem. A, 10, 10004, 10.1039/D2TA01342H Ma, 2021, Mater. Today Energy, 21 Park, 2010, Chem Soc Rev, 39, 3115, 10.1039/b919877f Baggetto, 2013, Electrochem. Commun., 34, 41, 10.1016/j.elecom.2013.05.025 Yin, 2013, Electrochim. Acta, 102, 369, 10.1016/j.electacta.2013.04.026 Rong, 2014, Electrochim. Acta, 147, 352, 10.1016/j.electacta.2014.09.107 Yin, 2015, J. Mater. Chem. A, 3, 1427, 10.1039/C4TA05244G Liu, 2018, Dalton Trans., 47, 7402, 10.1039/C8DT01060A Lin, 2015, J. Mater. Chem. A, 3, 11199, 10.1039/C5TA02216A Xiao, 2016, Angew. Chem. Int. Ed., 55, 7427, 10.1002/anie.201602653 Wang, 2012, Mater. Today, 15, 544, 10.1016/S1369-7021(13)70012-9 Das Gupta, 2014, Carbon, 70, 142, 10.1016/j.carbon.2013.12.084 Das Gupta, 2016, Metall. Mater. Trans. E, 4, 22 Reddy, 2013, Chem. Rev., 113, 5364, 10.1021/cr3001884 Wu, 2012, Nanoscale, 4, 2526, 10.1039/c2nr11966h Poizot, 2000, Nature, 407, 496, 10.1038/35035045 Zhao, 2016, Adv. Energy Mater., 6, 1502175, 10.1002/aenm.201502175 Bruce, 2008, Angew. Chem. Int. Ed. Engl., 47, 2930, 10.1002/anie.200702505 Reddy, 2011, Electrochem. Solid-State Lett., 14, A79, 10.1149/1.3556984 Reddy, 2015, ACS Sustain. Chem. Eng., 3, 3035, 10.1021/acssuschemeng.5b00439 Reddy, 2013, ACS Appl. Mater Interfaces, 5, 4361, 10.1021/am400579q Reddy, 2012, RSC Adv., 2, 9619, 10.1039/c2ra21033a Reddy, 2015, Mater. Lett., 140, 115, 10.1016/j.matlet.2014.10.145 Senthilkumar, 2011, Mater. Chem. Phys., 130, 285, 10.1016/j.matchemphys.2011.06.043 Huang, 2015, Chemistry, 21, 14140, 10.1002/chem.201500910 Wang, 2016, Chem. Rev., 116, 10983, 10.1021/acs.chemrev.5b00731 Li, 2015, Cryst. Growth Des., 16, 34, 10.1021/acs.cgd.5b00670 Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138 Tang, 2012, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Ghidiu, 2014, Nature, 516, 78, 10.1038/nature13970 Li, 2019, J. Am. Chem. Soc., 141, 4730, 10.1021/jacs.9b00574 Li, 2020, Nat. Mater., 19, 894, 10.1038/s41563-020-0657-0 Song, 2017, J. Mater. Chem. A, 5, 1282, 10.1039/C6TA09829K Ferrari, 2015, Nanoscale, 7, 4598, 10.1039/C4NR01600A Sun, 2015, Chem. Commun., 51, 11892, 10.1039/C5CC00542F Holleck, 1972, J. Electrochem. Soc., 119, 1161, 10.1149/1.2404433 Jiguo, 2017, J. Electrochem. Soc., 164, A3292, 10.1149/2.1761713jes Yu, 2019, ChemistrySelect, 4, 3018, 10.1002/slct.201900374 Zhang, 2018, J. Mater. Chem. A, 6, 3084, 10.1039/C7TA10632G Zhang, 2019, Energy Environ. Sci., 12, 1918, 10.1039/C9EE00862D Tu, 2019, J. Alloys Compd. Torst, 1972, Inorg. Chem., 12, 1439, 10.1021/ic50112a059 Wang, 2019, Chem Commun, 55, 2138, 10.1039/C8CC09677E Sakai, 2016, Nano Lett., 3242, 10.1021/acs.nanolett.6b00741 Bronstein, 1958, J. Am. Chem. Soc., 80, 2077, 10.1021/ja01542a014 Haarberg, 1989, J. Appl. Electrochem., 19, 789, 10.1007/BF01007924 Haarberg, 1990, J. Electrochem. Soc., 137, 2777, 10.1149/1.2087070 Ning, 2015, J. Power Sources, 275, 370, 10.1016/j.jpowsour.2014.10.173 Kim, 2018, J. Power Sources, 377, 87, 10.1016/j.jpowsour.2017.11.081 Wang, 2019, Energies, 12, 183, 10.3390/en12010183 Yin, 2018, Nat. Energy, 3, 127, 10.1038/s41560-017-0072-1 Kim, 2013, J. Power Sources, 241, 239, 10.1016/j.jpowsour.2013.04.052 Bradwell, 2012, J. Am. Chem. Soc., 134, 1895, 10.1021/ja209759s Zhou, 2022, Energy Storage Mater., 50, 572, 10.1016/j.ensm.2022.05.032 Van Artsdalen, 1955, J. Phys. Chem., 59, 118, 10.1021/j150524a007 Johnson, 1971, J. Electrochem. Soc., 118, 631, 10.1149/1.2408125 Weppner, 1978, J. Electrochem. Soc., 125, 7, 10.1149/1.2131401 Liu, 2018, J. Mater. Chem. A, 6, 8159, 10.1039/C8TA01782D Wang, 2014, Nature, 514, 348, 10.1038/nature13700 Li, 2021, J. Clean. Prod., 312 Guidotti, 2006, J. Power Sources, 161, 1443, 10.1016/j.jpowsour.2006.06.013 Ouchi, 2014, J. Electrochem. Soc., 161, A1898, 10.1149/2.0801412jes Liu, 2015, J. Mater. Chem. A, 3, 21039, 10.1039/C5TA06069A Ren, 2015, Nano Lett., 15, 6142, 10.1021/acs.nanolett.5b02427 Cui, 2017, Sustain. Energy Fuels, 1, 474, 10.1039/C6SE00082G Cui, 2018, J. Electrochem. Soc., 165, A235, 10.1149/2.0821802jes Moorhouse, 2016, Chem. Commun., 52, 13865, 10.1039/C6CC08133A Moorhouse, 2012, Rev. Sci. Instrum., 83, 10.1063/1.4746382 H. Jiao, et al., Sci. Adv. 8 (2022), eabm5678. Chen, 2022, Cell Rep. Phys. Sci., 3