Molien generating functions and integrity bases for the action of the $${{\mathrm {SO(3)}}}$$ and $${{\mathrm {O(3)}}}$$ groups on a set of vectors
Tóm tắt
The construction of integrity bases for invariant and covariant polynomials built from a set of three dimensional vectors under the
$${{\mathrm {SO(3)}}}$$
and
$${{\mathrm {O(3)}}}$$
symmetries is presented. This paper is a follow-up to our previous work that dealt with a set of two dimensional vectors under the action of the
$${{\mathrm {SO(2)}}}$$
and
$${{\mathrm {O(2)}}}$$
groups (Dhont and Zhilinskií in J Phys A Math Theor 46:455202, 2013). The expressions of the Molien generating functions as one rational function are a useful guide to build integrity bases for the rings of invariants and the free modules of covariants. The structure of the non-free modules of covariants is more complex. In this case, we write the Molien generating function as a sum of rational functions and show that its symbolic interpretation leads to the concept of generalized integrity basis. The integrity bases and generalized integrity bases for
$${\mathrm {O(3)}}$$
are deduced from the
$${\mathrm {SO(3)}}$$
ones. The results are useful in quantum chemistry to describe the potential energy or multipole moment hypersurfaces of molecules. In particular, the generalized integrity bases that are required for the description of the electric and magnetic quadrupole moment hypersurfaces of tetratomic molecules are given for the first time.
Tài liệu tham khảo
E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Pure and Applied Physics, vol. 5 (Academic Press, New York, 1959)
R. McWeeny, Symmetry: An Introduction to Group Theory and Its Applications (Dover Publications, Mineola, New York, 2002)
M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover Publications, Mineola, New York, 1989)
J.A. Dieudonné, J.B. Carrell, Adv. Math. 4(1), 1 (1970). https://doi.org/10.1016/0001-8708(70)90015-0
N.J.A. Sloane, Am. Math. Mon. 84(2), 82 (1977). https://doi.org/10.2307/2319929
B. Sturmfels, Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, 2nd edn. (Springer, Wien, 2008)
L. Michel, B.I. Zhilinskií, Phys. Rep. 341(1–6), 11 (2001)
A. Schmelzer, J.N. Murrell, Int. J. Quantum Chem. 28(2), 287 (1985). https://doi.org/10.1002/qua.560280210
J. Ischtwan, S.D. Peyerimhoff, Int. J. Quantum Chem. 45(5), 471 (1993). https://doi.org/10.1002/qua.560450505
X. Huang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 122(4), 044308 (12 pages). (2005). https://doi.org/10.1063/1.1834500. See also the publisher’s note, Huang X, Braams B J and Bowman J M 2007 J. Chem. Phys. 127 099904
B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577 (2009). https://doi.org/10.1080/01442350903234923
Z. Xie, J.M. Bowman, J. Chem. Theory Comput. 6(1), 26 (2010). https://doi.org/10.1021/ct9004917
P. Cassam-Chenaï, F. Patras, J. Math. Chem. 44(4), 938 (2008). https://doi.org/10.1007/s10910-008-9354-y
P. Cassam-Chenaï, G. Dhont, F. Patras, J. Math. Chem. 53(1), 58 (2015). https://doi.org/10.1007/s10910-014-0410-5
V. Kopský, J. Phys. C Solid State Phys. 8(20), 3251 (1975). https://doi.org/10.1088/0022-3719/8/20/004
V. Kopský, J. Phys. A. Math. Gen. 12(4), 429 (1979). https://doi.org/10.1088/0305-4470/12/4/004
A.C. Pipkin, R.S. Rivlin, Arch. Ration. Mech. Anal. 4(1), 129 (1959). https://doi.org/10.1007/BF00281382
R.S. Rivlin, Arch. Ration. Mech. Anal. 4(1), 262 (1959). https://doi.org/10.1007/BF00281392
B. Desmorat, M. Olive, N. Auffray, R. Desmorat, B. Kolev, Computation of minimal covariants bases for 2D coupled constitutive laws (2020). https://hal.archives-ouvertes.fr/hal-02888267
J. Taurines, M. Olive, R. Desmorat, O. Hubert, B. Kolev, Integrity bases for cubic nonlinear magnetostriction (2020). https://hal.archives-ouvertes.fr/hal-03051787
G. Sartori, V. Talamini, J. Math. Phys. 39(4), 2367 (1998). https://doi.org/10.1063/1.532294
M. Planat, Int. J. Geom. Methods Mod. Phys. 08(02), 303 (2011). https://doi.org/10.1142/S0219887811005142
F. Holweck, J.G. Luque, J.Y. Thibon, J. Math. Phys. 55(1), 012202 (2014). https://doi.org/10.1063/1.4858336
F. Holweck, J.G. Luque, J.Y. Thibon, J. Math. Phys. 58(2), 022201 (2017). https://doi.org/10.1063/1.4975098
E. Rodriguez Bazan, E. Hubert, J. Symb. Comput. 107, 1 (2021). https://doi.org/10.1016/j.jsc.2021.01.004
J. Li, B. Jiang, H. Guo, J. Chem. Phys. 139(20), 204103 (2013). https://doi.org/10.1063/1.4832697
K. Shao, J. Chen, Z. Zhao, D.H. Zhang, J. Chem. Phys. 145(7), 071101 (2016). https://doi.org/10.1063/1.4961454
A. Nandi, C. Qu, J.M. Bowman, J. Chem. Phys. 151(8), 084306 (2019). https://doi.org/10.1063/1.5119348
R. Stanley, Proc. Symp. Pure Math. 34, 345 (1979)
G. Dhont, B.I. Zhilinskií, J. Phys. A Math. Theor. 46(45), 455202 (2013)
G. Dhont, F. Patras, B.I. Zhilinskií, J. Phys. A Math. Theor. 48(3), 035201 (2015). https://doi.org/10.1088/1751-8113/48/3/035201
G. Dhont, B.I. Zhilinskií, In Geometric Methods in Physics: XXXIV Workshop, Białowieża, Poland, June 28 – July 4, 2015, ed. by P. Kielanowski, T.S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov (Springer International Publishing, Cham, 2016), pp. 105–114. https://doi.org/10.1007/978-3-319-31756-4_11
T. Molien, Sitzungsber. König. Preuss. Akad. Wiss. 52, 1152 (1897)
B.T. Sutcliffe, J. Chem. Soc. Faraday Trans. 89(14), 2321 (1993). https://doi.org/10.1039/FT9938902321
F. Gatti, C. Iung, Phys. Rep. 484(1), 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.003
D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)
M.A. Collins, D.F. Parsons, J. Chem. Phys. 99(9), 6756 (1993)
H. Weyl, The Classical Groups. Their Invariants and Representations (Princeton University Press, Princeton, 1939)
M. Hochster, J.L. Roberts, Adv. Math. 13(2), 115 (1974). https://doi.org/10.1016/0001-8708(74)90067-X
H. Derksen, G. Kemper, Computational Invariant Theory (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-662-48422-7
M. Van den Bergh, In Proceedings of the International Congress of Mathematicians, ed. by S.D. Chatterji (Birkhäuser Basel, Basel, 1995), pp. 352–362. https://doi.org/10.1007/978-3-0348-9078-6_29
R.P. Stanley, Invent. Math. 68(2), 175 (1982)
H. Schmiedt, S. Schlemmer, P. Jensen, J. Chem. Phys. 143(15), 154302 (2015). https://doi.org/10.1063/1.4933001
G. Herzberg, Nature 163, 170 (1949). https://doi.org/10.1038/163170a0
A. Campargue, S. Kassi, A. Yachmenev, A.A. Kyuberis, J. Küpper, S.N. Yurchenko, Phys. Rev. Res. 2, 023091 (2020). https://doi.org/10.1103/PhysRevResearch.2.023091
A. Campargue, A.M. Solodov, A.A. Solodov, A. Yachmenev, S.N. Yurchenko, Phys. Chem. Chem. Phys. 22, 12476 (2020). https://doi.org/10.1039/D0CP01667E
A. Yachmenev, A. Campargue, S.N. Yurchenko, J. Küpper, J. Tennyson, J. Chem. Phys. 154(21), 211104 (2021). https://doi.org/10.1063/5.0053279
L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and Its Applications, vol. 8 (Cambridge University Press, Cambridge, 1985)
I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980). (Eq. (3.616.7))
Eq. (3.153) of Ref. [48]
Eq. (6.183) of Ref. [48]
E.O. Steinborn, (Academic Press, 1973), pp. 83–112. https://doi.org/10.1016/S0065-3276(08)60559-6. Eq. (123)
M.A. Blanco, M. Flórez, M. Bermejo, J. Mol. Struct. Theochem. 419(1), 19 (1997). https://doi.org/10.1016/S0166-1280(97)00185-1 (Eq. (6))