Molecular study on convective heat transfer of nanofluid in nanochannel: effect of CNT particles

Zhuolin Tang1, Jin Zhao2, Yanbiao Wang1
1Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, China
2School of Mechanical Engineering, Guizhou University, Guiyang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arora N, Gupta M. An updated review on application of nanofluids in flat tubes radiators for improving cooling performance. Renew Sustain Energy Rev. 2020;134: 110242.

Bhattacharyya PK, Sinha S. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics. 2013.

Yao S, Wang J, Liu X. Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel. Appl Energy. 2021;298: 117183.

Chakraborty P, Ma TF, Cao L, Wang Y. Significantly enhanced convective heat transfer through surface modification in nanochannels. Int J Heat Mass Transf. 2019;136:702–8.

Motlagh MB, Kalteh M. Investigating the wall effect on convective heat transfer in a nanochannel by molecular dynamics simulation. Int J Therm Sci. 2020;156: 106472.

Hamze S, et al. Few-layer graphene-based nanofluids with enhanced thermal conductivity. Nanomaterials. 2020;10(7):1258.

Paul J, et al. Carbon nanotube wires and cables: near-term applications and future perspectives. Nanoscale. 2011;3(11):4542–53.

Natnael B, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science. 2013;339(6116):182–6.

Jabbari F, Rajabpour A, Saedodin S. Viscosity of carbon nanotube/water nanofluid: equilibrium molecular dynamics. J Therm Anal Calorim. 2019;135:1787–96.

Singh A, et al. An overview of processing and properties of Cu/CNT nano composites. Mater today proc. 2017;4(2):3872–81.

Janas D, Liszka B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Mater Chem Front. 2018;2(1):22–35.

Sundaram RM, et al. Copper/carbon nanotube composites: research trends and outlook. Royal Soc open sci. 2018;5(11):180814.

Izadi M, et al. Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid. Chall Nano Micro Scale Sci Technol. 2015;3(1):1–13.

Naderi M, Karimipour A. Two-phase solid/liquid mixture of water/carbon nanotubes at the equilibration phase of atomic structures: atomic value effects in a microchannel using the molecular dynamics method. J Mol Liq. 2021;339: 116820.

Boroomandpour A, Toghraie D, Hashemian M. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-ethylene glycol (80: 20) as well as binary and mono nanofluids. Synth Met. 2020;268: 116501.

Jabbari F, Rajabpour A, Saedodin S. Thermal conductivity of CNT–water nanofluid at different temperatures, volume fractions, and diameters: Experimental investigation and molecular dynamics simulations. Microfluid Nanofluid. 2021;25:1–12.

Brown WM, Wang P, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers–short range forces. Comput Phys Commun. 2011;182(4):898–911.

Brown WM, Kohlmeyer A, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers–Particle–particle particlemesh. Comput Phys Commun. 2012;183(3):449–59.

Peng Y, Zarringhalam M, Hajian M, et al. Empowering the boiling condition of Argon flow inside a rectangular microchannel with suspending Silver nanoparticles by using of molecular dynamics simulation. J Mol Liq. 2019;295: 111721.

Semiromi DT, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf. 2012;48(1):141–52.

Wu L, Shao W, Cao Q, et al. Atomistic insight into the effects of depositional nanoparticle on nanoscale liquid film evaporation. Langmuir. 2021;37(17):5202–12.

Chen C, Lu Y, Dai S, et al. Rapid boiling of argon vapor film confined by alternated hydrophobic and hydrophilic structures: molecular dynamics study. Int Commun Heat Mass Transfer. 2021;125: 105315.

Yan SR, Shirani N, Zarringhalam M, et al. Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: investigation the effects of boundary wall temperatures. J Mol Liq. 2020;306: 112937.

Hasan MN, Shavik SM, Mukut KM, et al. Atomistic modelling of thin film argon evaporation over different solid surfaces at different wetting conditions. Micro Nano Lett. 2018;13(3):351–6.

Motlagh MB, Kalteh M. Investigating the wall effect on convective heat transfer in a nanochannel by molecular dynamics simulation. Int J Therm Sci. 2020;156:106472.

Tang Y, et al. Molecular dynamics simulation of carbon nanotube-enhanced laser-induced explosive boiling on a free surface of an ultrathin liquid film. Int J Heat Mass Transf. 2018;127:237–43.

O’connor TC, Andzelm J, Robbins MO. AIREBO-M: a reactive model for hydrocarbons at extreme pressures. J chem phys. 2015;142(2):024903.

Fu S-P, et al. Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS. Comput Phys Commun. 2017;210:193–203.

Tam L-h, Lau D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv. 2014;4(62):33074–81.

Hekmatifar M, Toghraie D, Mehmandoust B, et al. Molecular dynamics simulation of the phase transition process in the atomic scale for Ar/Cu nanofluid on the platinum plates. Int Commun Heat Mass Transfer. 2020;117: 104798.

Zhuolin T, et al. Understanding the role of nanoparticles in boiling phase transition: the effect of nanoparticle shape. J Mol Liq. 2022;371:121110.

Yao S, et al. The impacting mechanism of surface properties on flow and heat transfer features in nanochannel. Int J Heat Mass Transf. 2021;176: 121441.

Yao S, et al. Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel. Appl Energy. 2021;298: 117183.

Fang XP, Xuan YM, Li Q. Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett. 2009;95:203108–12.

Gharagozloo PE, Goodson KE. Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys. 2010;108:074309–15.

Sadeghi R, Haghshenasfard M, Etemad SGh, Keshavarzi E. Theoretical investigation of nanoparticles aggregation effect on Water-alumina laminar convective heat transfer. Int Comm Heat & Mass Transf. 2016;72:57–63.

Liu QX, Jiang PX, Xiang H. Molecular dynamics simulation of thermal conductivity of an argon liquid layer confined in nanospace. Mol Simul. 2010;36(13):1080–5.

Guo H, Zhao N. Interfacial layer simulation and effect on Cu-Ar nanofluids thermal conductivity using molecular dynamics method. J Mol Liq. 2018;259:40–7.

Kim HY, Sofo JO, Velegol D, et al. van der Waals forces between nanoclusters: Importance of many-body effects. J chem phys. 2006;124(7):074504.

Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36:914–44.

Zhang W, et al. Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology. 2004;15:936–9.

Krishnamurthy S, et al. Enhanced mass transport in nanofluids. Nano Lett. 2006;6(3):419–23.

Marable DC, Shin S, Yousefzadi Nobakht A. Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in grapheme nanochannels. Int J Heat Mass Transf. 2017;109:28–39.

Lee JK, et al. The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. Int j refrig. 2010;33(2):269–75.