Molecular structures, thermochemistry, and electron affinities for the dichlorine oxides: Cl2On/Cl2O (n = 1–4)

International Journal of Quantum Chemistry - Tập 95 Số 6 - Trang 731-757 - 2003
Qian‐Shu Li1, Shun-feng Lü1, Yaoming Xie2, Paul von Ragué Schleyer2, Henry F. Schaefer2
1School of Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
2Center for the Computational Quantum Chemistry, University of Georgia, Athens, GA 30602

Tóm tắt

Abstract

The molecular structures, relative energies, vibrational frequencies, and electron affinities for the Cl2On/Cl2O (n = 1–4) systems have been investigated using hybrid Hartree–Fock/density functional theories (BHLYP and B3LYP) and pure density functional theories (BP86 and BLYP). The three different types of neutral/anion energy differences reported in this research are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvret), and the vertical detachment energy (VDE). The basis set used in this work is of double‐ζ plus polarization quality with additional s‐ and p‐type diffuse functions, and it is denoted DZP++. The geometries are fully optimized by all four DFT methods. We have predicted a number of possible low‐lying local minima, including some that are unprecedented. Most strikingly, in several cases structures that have been observed in the laboratory turn out not to be lowest in energy for a particular chemical composition. Two structures are predicted with a formally seven‐coordinate chlorine atom. The global minima for the Cl2On/Cl2O (n = 1–4) systems are ClOCl (C2v), ClClO (Cs), ClOOCl (C2), OOCl (C2v), ClOOOCl (C2/C1), ClO(O2)Cl (Cs), trans‐ClO(O2)OCl (Ci), and trans‐ClO(O2)OCl (Ci), respectively. The relative energies of the different minima are reported. Five of the 42 structures predicted here have been determined experimentally. Our theoretical geometries and vibrational frequencies are carefully compared with the limited available experimental results, and the BHLYP functional in general provides the best agreement. The ClClO and ClClO ground states might be regarded as Cl … ClO and Cl … ClO2 complexes, respectively. The adiabatic electron affinities, obtained at the favored DZP++ BLYP level of theory, are 3.12 eV for Cl2O, 3.96 eV for Cl2O2, 3.66 eV for Cl2O3, and 4.15 eV for Cl2O4. The adiabatic EAs for the first three systems are similar to those of Br2On (3.14, 3.80, and 3.46 eV with BLYP for Br2On, n = 1–3), and this may reflect the geometric similarity between these bromine and chlorine species. But, EAad for Br2O4 (1.97 eV) is different from Cl2O4 because the neutral and anionic bromine species have different global minimum geometries from those for Cl2O4. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003

Từ khóa


Tài liệu tham khảo

10.1126/science.243.4892.763

10.1038/347347a0

10.1063/1.478528

10.1063/1.473121

10.1021/jp020362o

10.1002/1521-3765(20021216)8:24<5601::AID-CHEM5601>3.0.CO;2-Z

10.1021/j100132a025

10.1016/S0166-1280(97)00145-0

10.1021/jp983999

10.1021/j100159a004

10.1021/jp962253d

10.1021/ed077p1375

10.1021/jp001142i

10.1029/97JD00008

10.1021/j100369a007

10.1021/jp984410

10.1063/1.464412

10.1021/j100221a001

10.1021/j100365a033

10.1021/j100378a046

10.1021/j100372a094

10.1021/j100286a035

10.1021/j100012a007

10.1063/1.456359

10.1016/S1010-6030(97)00276-1

Ruhl E.;Rockland U.;Baumgartel H.;Losking O.;Binnewies M.;Willner H.Int J Mass Spectrom1999 185/186/187 545.

10.1021/j100644a007

10.1021/j100012a016

Chase M. W., 1985, J Phys Chem Ref Data, 14, 820

10.1063/1.555722

10.1021/j100065a026

10.1021/ja00082a038

10.1063/1.463663

10.1021/j100378a089

10.1063/1.457377

10.1029/GL015i008p00883

10.1021/jp971465n

10.1021/ic50088a019

10.1021/j100313a062

10.1021/ic50102a009

10.1002/anie.199115101

10.1021/j100109a017

10.1021/jp003029y

10.1021/ja981131r

10.1021/jp9907894

10.1063/1.471846

10.1080/0026897021000026845

10.1021/cr990044u

10.1063/1.464913

10.1103/PhysRevB.37.785

1993, The BH and HLYP method implemented in the Gaussian programs has the formula 0.5 × E x (LSDA) + 0.5 × E x (HF) + 0.5 × ΔE x (B88) + E c (LYP), which is actually somewhat different from the formulation proposed by Becke, A, D. J Chem Phys, 98, 1373

10.1103/PhysRevA.38.3098

10.1103/PhysRevB.33.8822

Perdew J. P., 1986, Phys Rev B, 34, 7046

Frisch M. J., 1995, Gaussian 94

Dunning T. H., 1977, 1

10.1063/1.1696113

10.1063/1.1674408

10.1063/1.449367

10.1016/0022-2852(81)90122-3

10.1063/1.1840572

10.1016/0020-7381(81)80084-8

10.1002/qua.560560414

Schmeisser M., 1957, Angew Chem 1955, 67, 493; Schmeisser, M.; Fink, W, Angew Chem, 69, 780

10.1021/ic00038a040

10.1021/ja00987a088

10.1016/S0009-2614(89)87350-6

10.1021/j100286a035

10.1021/j100131a032

10.1006/jmsp.1995.1079

10.1021/j100076a006

10.1016/S0166-1280(98)00269-3

10.1002/bbpc.19910950809

10.1021/j100221a001

10.1039/f19848002737

10.1021/j100085a013

10.1063/1.473530

10.1063/1.471538

10.1080/002689796173949