Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer

Springer Science and Business Media LLC - Tập 45 Số 2 - Trang 201-225 - 2022
Xiaojia Li1, Jie He2, Keping Xie3
1Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
2Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
3Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Lardon, L. Bouwens, Metaplasia in the pancreas. Differentiation 73, 278–286 (2005)

D. Tosh, J.M. Slack, How cells change their phenotype. Nat. Rev. Mol. Cell. Biol. 3, 187–194 (2002)

A.R. Meyer, J.R. Goldenring, Injury, repair, inflammation and metaplasia in the stomach. J. Physiol. 596, 3861–3867 (2018)

S.C. Shah, S. Gupta, D. Li, D. Morgan, R.A. Mustafa, A.J. Gawron, Spotlight: Gastric Intestinal Metaplasia. Gastroenterology 158, 704 (2020)

R.E. Leube, T.J. Rustad, Squamous cell metaplasia in the human lung: molecular characteristics of epithelial stratification. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol. 61, 227–253 (1991)

P. Correa, M.B. Piazuelo, K.T. Wilson, Pathology of gastric intestinal metaplasia: clinical implications. Am. J. Gastroenterol. 105, 493–498 (2010)

V. Giroux, A.K. Rustgi, Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer 17, 594–604 (2017)

J.M. Slack, Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell. Biol. 8, 369–378 (2007)

P. Sharma, G.W. Falk, A.P. Weston, D. Reker, M. Johnston, R.E. Sampliner, Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 4, 566–572 (2006)

J.M. Quinlan, B.J. Colleypriest, M. Farrant, D. Tosh, Epithelial metaplasia and the development of cancer. Biochim. Biophys. Acta 1776, 10–21 (2007)

M.H. Cleveland, J.M. Sawyer, S. Afelik, J. Jensen, S.D. Leach, Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell. Dev. Biol. 23, 711–719 (2012)

F.C. Pan, C. Wright, Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240, 530–565 (2011)

S. Puri, M. Hebrok, Cellular plasticity within the pancreas–lessons learned from development. Dev. Cell. 18, 342–356 (2010)

M. Reichert, A.K. Rustgi, Pancreatic ductal cells in development, regeneration, and neoplasia. J. Clin. Invest. 121, 4572–4578 (2011)

J.M. Slack, Developmental biology of the pancreas. Development 121, 1569–1580 (1995)

A.A. Aughsteen, A comparative immunohistochemical study on amylase localization in the rat and human exocrine pancreas. Saudi Med. J. 22, 410–415 (2001)

S.R. Hingorani, L. Wang, A.S. Multani, C. Combs, T.B. Deramaudt et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005)

C. Guerra, A.J. Schuhmacher, M. Canamero, P.J. Grippo, L. Verdaguer et al., Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007)

P.J. Grippo, P.S. Nowlin, M.J. Demeure, D.S. Longnecker, E.P. Sandgren, Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res. 63, 2016–2019 (2003)

I. Houbracken, E. de Waele, J. Lardon, Z. Ling, H. Heimberg et al., Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas. Gastroenterology 141, 731–741 (2011), 41 e1-4

S.R. Hingorani, E.F. Petricoin, A. Maitra, V. Rajapakse, C. King et al., Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003)

R.N. Wang, G. Kloppel, L. Bouwens, Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411 (1995)

A.K. Saluja, V. Dudeja, Relevance of animal models of pancreatic cancer and pancreatitis to human disease. Gastroenterology 144, 1194–1198 (2013)

K. Hayashi, T. Takahashi, A. Kakita, S. Yamashina, Regional differences in the cellular proliferation activity of the regenerating rat pancreas after partial pancreatectomy. Arch. Histol. Cytol. 62, 337–346 (1999)

M. Wagner, H. Luhrs, G. Kloppel, G. Adler, R.M. Schmid, Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology 115, 1254–1262 (1998)

J. Liu, N. Akanuma, C. Liu, A. Naji, G.A. Halff et al., TGF-beta1 promotes acinar to ductal metaplasia of human pancreatic acinar cells. Sci. Rep. 6, 30904 (2016)

B.Z. Stanger, M. Hebrok, Control of cell identity in pancreas development and regeneration. Gastroenterology 144, 1170–1179 (2013)

L.C. Murtaugh, M.D. Keefe, Regeneration and repair of the exocrine pancreas. Annu. Rev. Physiol. 77, 229–249 (2015)

L. Haeberle, I. Esposito, Pathology of pancreatic cancer. Transl. Gastroenterol. Hepatol. 4, 50 (2019)

S. Crippa, C. Fernandez-Del Castillo, R. Salvia, D. Finkelstein, C. Bassi et al., Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin. Gastroenterol. Hepatol. 8, 213–219 (2010)

T.C. Cornish, R.H. Hruban, Pancreatic intraepithelial neoplasia. Surg. Pathol. Clin. 4, 523–535 (2011)

I. Parsa, D.S. Longnecker, D.G. Scarpelli, P. Pour, J.K. Reddy, M. Lefkowitz, Ductal metaplasia of human exocrine pancreas and its association with carcinoma. Cancer Res. 45, 1285–1290 (1985)

K. Brune, T. Abe, M. Canto, L. O’Malley, A.P. Klein et al., Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am. J. Surg. Pathol. 30, 1067–1076 (2006)

G. Shi, D. DiRenzo, C. Qu, D. Barney, D. Miley, S.F. Konieczny, Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia. Oncogene 32, 1950–1958 (2013)

O. Strobel, Y. Dor, J. Alsina, A. Stirman, G. Lauwers et al., In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133, 1999–2009 (2007)

M. Aichler, C. Seiler, M. Tost, J. Siveke, P.K. Mazur et al., Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J. Pathol. 226, 723–734 (2012)

A.J. Aguirre, N. Bardeesy, M. Sinha, L. Lopez, D.A. Tuveson et al., Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003)

N. Bardeesy, K.H. Cheng, J.H. Berger, G.C. Chu, J. Pahler et al., Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20, 3130–3146 (2006)

L. Zhu, G. Shi, C.M. Schmidt, R.H. Hruban, S.F. Konieczny, Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am. J. Pathol. 171, 263–273 (2007)

D.A. Tuveson, L. Zhu, A. Gopinathan, N.A. Willis, L. Kachatrian et al., Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res. 66, 242–247 (2006)

S. Kibe, K. Ohuchida, Y. Ando, S. Takesue, H. Nakayama et al., Cancer-associated acinar-to-ductal metaplasia within the invasive front of pancreatic cancer contributes to local invasion. Cancer Lett. 444, 70–81 (2019)

J. Dissin, L.R. Mills, D.L. Mains, O. Black Jr., P.D. Webster III, Experimental induction of pancreatic adenocarcinoma in rats. J. Natl. Cancer Inst. 55, 857–864 (1975)

D.E. Bockman, O. Black Jr., L.R. Mills, P.D. Webster, Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene. Am. J. Pathol. 90, 645–658 (1978)

B. Flaks, M.A. Moore, A. Flaks, Ultrastructural analysis of pancreatic carcinogenesis. III. Multifocal cystic lesions induced by N-nitroso-bis(2-hydroxypropyl)amine in the hamster exocrine pancreas. Carcinogenesis 1, 693–706 (1980)

M.H. Levitt, C.C. Harris, R. Squire, S. Springer, M. Wenk et al., Experimental pancreatic carcinogenesis. I. Morphogenesis of pancreatic adenocarcinoma in the Syrian golden hamster induced by N-nitroso-bis(2-hydroxypropyl)amine. Am. J. Pathol. 88, 5–28 (1977)

R.L. Greer, B.K. Staley, A. Liou, M. Hebrok, Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia. Gastroenterology 145, 1088–1097 e8 (2013)

D.E. Bockman, G. Merlino, Cytological changes in the pancreas of transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 103, 1883–1892 (1992)

P. de la Porte Lechene, J. Iovanna, C. Odaira, R. Choux, H. Sarles, Z. Berger, Involvement of tubular complexes in pancreatic regeneration after acute necrohemorrhagic pancreatitis. Pancreas 6, 298–306 (1991)

I. Esposito, C. Seiler, F. Bergmann, J. Kleeff, H. Friess, P. Schirmacher, Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment. Pancreas 35, 212–217 (2007)

C. Shi, A.P. Klein, M. Goggins, A. Maitra, M. Canto et al., Increased prevalence of precursor lesions in familial pancreatic cancer patients. Clin. Cancer Res. 15, 7737–7743 (2009)

P.A. Perez-Mancera, C. Guerra, M. Barbacid, D.A. Tuveson, What we have learned about pancreatic cancer from mouse models. Gastroenterology 142, 1079–1092 (2012)

I. Rooman, F.X. Real, Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 61, 449–458 (2012)

E. Saponara, K. Grabliauskaite, M. Bombardo, R. Buzzi, A.B. Silva et al., Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J. Pathol. 237, 495–507 (2015)

N. Chuvin, D.F. Vincent, R.M. Pommier, L.B. Alcaraz, J. Gout et al., Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cell. Mol. Gastroenterol. Hepatol. 4, 263–282 (2017)

R.M.M. Ferreira, R. Sancho, H.A. Messal, E. Nye, B. Spencer-Dene et al., Duct- and acinar-derived pancreatic ductal adenocarcinomas show distinct tumor progression and marker expression. Cell. Rep. 21, 966–978 (2017)

C. Shi, S.M. Hong, P. Lim, H. Kamiyama, M. Khan et al., KRAS2 mutations in human pancreatic acinar-ductal metaplastic lesions are limited to those with PanIN: implications for the human pancreatic cancer cell of origin. Mol. Cancer Res. 7, 230–236 (2009)

N.T. van Heek, A.K. Meeker, S.E. Kern, C.J. Yeo, K.D. Lillemoe et al., Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol. 161, 1541–1547 (2002)

S.M. Hong, C.M. Heaphy, C. Shi, S.H. Eo, H. Cho et al., Telomeres are shortened in acinar-to-ductal metaplasia lesions associated with pancreatic intraepithelial neoplasia but not in isolated acinar-to-ductal metaplasias. Mod. Pathol. 24, 256–266 (2011)

N.I. Walker, C.M. Winterford, J.F. Kerr, Ultrastructure of the rat pancreas after experimental duct ligation. II. Duct and stromal cell proliferation, differentiation, and deletion. Pancreas 7, 420–434 (1992)

J.L. Iovanna, P. de la Porte Lechene, J.C. Dagorn, Expression of genes associated with dedifferentiation and cell proliferation during pancreatic regeneration following acute pancreatitis. Pancreas 7, 712–718 (1992)

S.Y. Song, M. Gannon, M.K. Washington, C.R. Scoggins, I.M. Meszoely et al., Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology 117, 1416–1426 (1999)

C. Paoli, A. Carrer, Organotypic culture of acinar cells for the study of pancreatic cancer initiation. Cancers (Basel) 12 (2020)

D.E. Bockman, W.R. Boydston, M.C. Anderson, Origin of tubular complexes in human chronic pancreatitis. Am. J. Surg. 144, 243–249 (1982)

J.N. Jensen, E. Cameron, M.V. Garay, T.W. Starkey, R. Gianani, J. Jensen, Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128, 728–741 (2005)

A.L. Means, I.M. Meszoely, K. Suzuki, Y. Miyamoto, A.K. Rustgi et al., Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767–3776 (2005)

R.J. MacDonald, G.H. Swift, F.X. Real, Transcriptional control of acinar development and homeostasis. Prog Mol. Biol. Transl Sci. 97, 1–40 (2010)

J.M. Bailey, J. Alsina, Z.A. Rasheed, F.M. McAllister, Y.Y. Fu et al., DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 146, 245–256 (2014)

W. Qiu, H.E. Remotti, S.M. Tang, E. Wang, L. Dobberteen et al., Pancreatic DCLK1(+) cells originate distinctly from PDX1(+) progenitors and contribute to the initiation of intraductal papillary mucinous neoplasm in mice. Cancer Lett. 423, 71–79 (2018)

B. Schutz, A.L. Ruppert, O. Strobel, M. Lazarus, Y. Urade et al., Distribution pattern and molecular signature of cholinergic tuft cells in human gastro-intestinal and pancreatic-biliary tract. Sci. Rep. 9, 17466 (2019)

K.E. DelGiorno, R.F. Naeem, L. Fang, C.Y. Chung, C. Ramos et al., Tuft cell formation reflects epithelial plasticity in pancreatic injury: implications for modeling human pancreatitis. Front. Physiol. 11, 88 (2020)

K.E. DelGiorno, C.Y. Chung, V. Vavinskaya, H.C. Maurer, S.W. Novak et al., Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2. Gastroenterology 159, 1866–1881 e8 (2020)

P. Storz, Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 14, 296–304 (2017)

Y. Schlesinger, O. Yosefov-Levi, D. Kolodkin-Gal, R.Z. Granit, L. Peters et al., Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun. 11, 4516 (2020)

A.V. Pinho, I. Rooman, M. Reichert, N. De Medts, L. Bouwens et al., Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 60, 958–966 (2011)

Y. Miyamoto, A. Maitra, B. Ghosh, U. Zechner, P. Argani et al., Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003)

P.P. Prevot, A. Simion, A. Grimont, M. Colletti, A. Khalaileh et al., Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut 61, 1723–1732 (2012)

M.A. Collins, W. Yan, J.S. Sebolt-Leopold, M. Pasca di Magliano, MAPK signaling is required for dedifferentiation of acinar cells and development of pancreatic intraepithelial neoplasia in mice. Gastroenterology 146, 822 – 34 e7 (2014)

M.L. Babicky, M.M. Harper, J. Chakedis, A. Cazes, E.S. Mose et al., MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene 38, 5599–5611 (2019)

H. Ying, P. Dey, W. Yao, A.C. Kimmelman, G.F. Draetta et al., Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 30, 355–385 (2016)

T. Yoshida, D. Hanahan, Murine pancreatic ductal adenocarcinoma produced by in vitro transduction of polyoma middle T oncogene into the islets of Langerhans. Am. J. Pathol. 145, 671–684 (1994)

N.M. Krah, O.J. De La, G.H. Swift, C.Q. Hoang, S.G. Willet et al., The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. Elife 4 (2015)

A.Y.L. Lee, C.L. Dubois, K. Sarai, S. Zarei, D.F. Schaeffer et al., Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut 68, 487–498 (2019)

C.L. Pin, J.F. Ryan, R. Mehmood, Acinar cell reprogramming: a clinically important target in pancreatic disease. Epigenomics 7, 267–281 (2015)

Y. Xu, J. Liu, M. Nipper, P. Wang, Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. Ann. Pancreat. Cancer 2 (2019)

K. Satake, A. Hiura, A new model for pancreatitis. Pancreas 16, 284–288 (1998)

M. Bombardo, E. Saponara, E. Malagola, R. Chen, G.M. Seleznik et al., Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia. Br. J. Pharmacol. 174, 3865–3880 (2017)

X. Tao, Q. Chen, N. Li, H. Xiang, Y. Pan et al., Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomed. Pharmacother 125, 109999 (2020)

H. Archer, N. Jura, J. Keller, M. Jacobson, D. Bar-Sagi, A mouse model of hereditary pancreatitis generated by transgenic expression of R122H trypsinogen. Gastroenterology 131, 1844–1855 (2006)

E. Hegyi, M. Sahin-Toth, Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut 68, 301–312 (2019)

F. Gui, Y. Zhang, J. Wan, X. Zhan, Y. Yao et al., Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J. Clin. Invest. 130, 189–202 (2020)

N. Habbe, G. Shi, R.A. Meguid, V. Fendrich, F. Esni et al., Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl. Acad. Sci. U S A 105, 18913–18918 (2008)

D.A. Morris JPt, Cano, S. Sekine, S.C. Wang, M. Hebrok, Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010)

S.Y. Gidekel Friedlander, G.C. Chu, E.L. Snyder, N. Girnius, G. Dibelius et al., Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009)

G. Shi, L. Zhu, Y. Sun, R. Bettencourt, B. Damsz et al., Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology 136, 1368–1378 (2009)

N. Bardeesy, A.J. Aguirre, G.C. Chu, K.H. Cheng, L.V. Lopez et al., Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl. Acad. Sci. U S A 103, 5947–5952 (2006)

K. Kojima, S.M. Vickers, N.V. Adsay, N.C. Jhala, H.G. Kim et al., Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res. 67, 8121–8130 (2007)

L. Wang, D. Xie, D. Wei, Pancreatic acinar-to-ductal metaplasia and pancreatic cancer. Methods Mol. Biol. 1882, 299–308 (2019)

A.M. Jamal, M. Lipsett, R. Sladek, S. Laganiere, S. Hanley, L. Rosenberg, Morphogenetic plasticity of adult human pancreatic islets of Langerhans. Cell. Death Differ. 12, 702–712 (2005)

B.M. Schmied, G. Liu, H. Matsuzaki, A. Ulrich, S. Hernberg et al., Differentiation of islet cells in long-term culture. Pancreas 20, 337–347 (2000)

O. Ishikawa, H. Ohigashi, S. Imaoka, I. Nakai, M. Mitsuo et al., The role of pancreatic islets in experimental pancreatic carcinogenicity. Am. J. Pathol. 147, 1456–1464 (1995)

V.T. Solovyan, J. Keski-Oja, Apoptosis of human endothelial cells is accompanied by proteolytic processing of latent TGF-beta binding proteins and activation of TGF-beta. Cell. Death Differ. 12, 815–826 (2005)

S. Yuan, L. Rosenberg, S. Paraskevas, D. Agapitos, W.P. Duguid, Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61, 67–75 (1996)

R. Wang, J. Li, L. Rosenberg, Factors mediating the transdifferentiation of islets of Langerhans to duct epithelial-like structures. J. Endocrinol. 171, 309–318 (2001)

A.M. Jamal, M. Lipsett, A. Hazrati, S. Paraskevas, D. Agapitos et al., Signals for death and differentiation: a two-step mechanism for in vitro transformation of adult islets of Langerhans to duct epithelial structures. Cell. Death Differ. 10, 987–996 (2003)

O. Strobel, Y. Dor, A. Stirman, A. Trainor, C. Fernandez-del Castillo et al., Beta cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo. Proc. Natl. Acad. Sci. U S A 104, 4419–4424 (2007)

K.C. Ray, K.M. Bell, J. Yan, G. Gu, C.H. Chung et al., Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model. PLoS One 6, e16786 (2011)

F.H. Brembeck, F.S. Schreiber, T.B. Deramaudt, L. Craig, B. Rhoades et al., The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 63, 2005–2009 (2003)

J.M. Bailey, A.M. Hendley, K.J. Lafaro, M.A. Pruski, N.C. Jones et al., p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene 35, 4282–4288 (2016)

J.L. Kopp, C.L. Dubois, A.E. Schaffer, E. Hao, H.P. Shih et al., Sox9 + ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665 (2011)

J. Qian, J. Niu, M. Li, P.J. Chiao, M.S. Tsao, In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 65, 5045–5053 (2005)

O. Strobel, D.E. Rosow, E.Y. Rakhlin, G.Y. Lauwers, A.G. Trainor et al., Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 138, 1166–1177 (2010)

S.F. Boj, C.I. Hwang, L.A. Baker, I.I. Chio, D.D. Engle et al., Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015)

M. Rovira, S.G. Scott, A.S. Liss, J. Jensen, S.P. Thayer, S.D. Leach, Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc. Natl. Acad. Sci. U S A 107, 75–80 (2010)

R.L. Beer, M.J. Parsons, M. Rovira, Centroacinar cells: At the center of pancreas regeneration. Dev. Biol. 413, 8–15 (2016)

P.M. Pour, Pancreatic centroacinar cells. The regulator of both exocrine and endocrine function. Int. J. Pancreatol. 15, 51–64 (1994)

P.M. Pour, Mechanism of pseudoductular (tubular) formation during pancreatic carcinogenesis in the hamster model. An electron-microscopic and immunohistochemical study. Am. J. Pathol. 130, 335–344 (1988)

D. Kopinke, M. Brailsford, F.C. Pan, M.A. Magnuson, C.V. Wright, L.C. Murtaugh, Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Dev. Biol. 362, 57–64 (2012)

T. Gasslander, I. Ihse, S. Smeds, The importance of the centroacinar region in cerulein-induced mouse pancreatic growth. Scand. J. Gastroenterol. 27, 564–570 (1992)

F. Delaspre, R.L. Beer, M. Rovira, W. Huang, G. Wang et al., Centroacinar cells are progenitors that contribute to endocrine pancreas regeneration. Diabetes 64, 3499–3509 (2015)

E. Mameishvili, I. Serafimidis, S. Iwaszkiewicz, M. Lesche, S. Reinhardt et al., Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer. Proc. Natl. Acad. Sci. U S A 116, 20679–20688 (2019)

B.Z. Stanger, B. Stiles, G.Y. Lauwers, N. Bardeesy, M. Mendoza et al., Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell. 8, 185–195 (2005)

H. Zulewski, E.J. Abraham, M.J. Gerlach, P.B. Daniel, W. Moritz et al., Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001)

S.Y. Kim, S.H. Lee, B.M. Kim, E.H. Kim, B.H. Min et al., Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells. Dev. Dyn. 230, 1–11 (2004)

L. Huang, A. Holtzinger, I. Jagan, M. BeGora, I. Lohse et al., Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015)

G. Lanzoni, V. Cardinale, G. Carpino, The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology 64, 277–286 (2016)

P.L. Herrera, Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127, 2317–2322 (2000)

T. Serizawa, K. Hamada, M. Akashi, Polymerization within a molecular-scale stereoregular template. Nature 429, 52–55 (2004)

Q. Zhou, A.C. Law, J. Rajagopal, W.J. Anderson, P.A. Gray, D.A. Melton, A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 13, 103–114 (2007)

M. Solar, C. Cardalda, I. Houbracken, M. Martin, M.A. Maestro et al., Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev. Cell 17, 849–860 (2009)

W. Li, M. Nakanishi, A. Zumsteg, M. Shear, C. Wright et al., In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife 3, e01846 (2014)

M.A. Hale, H. Kagami, L. Shi, A.M. Holland, H.P. Elsasser et al., The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev. Biol. 286, 225–237 (2005)

A. Inada, C. Nienaber, H. Katsuta, Y. Fujitani, J. Levine et al., Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl. Acad. Sci. U S A 105, 19915–19919 (2008)

A. Delacour, V. Nepote, A. Trumpp, P.L. Herrera, Nestin expression in pancreatic exocrine cell lineages. Mech. Dev. 121, 3–14 (2004)

F. Esni, D.A. Stoffers, T. Takeuchi, S.D. Leach, Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech. Dev. 121, 15–25 (2004)

C. Carriere, E.S. Seeley, T. Goetze, D.S. Longnecker, M. Korc, The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc. Natl. Acad. Sci. U S A 104, 4437–4442 (2007)

C.B. Westphalen, Y. Takemoto, T. Tanaka, M. Macchini, Z. Jiang et al., Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 18, 441–455 (2016)

Y. Dor, J. Brown, O.I. Martinez, D.A. Melton, Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004)

B.M. Desai, J. Oliver-Krasinski, D.D. De Leon, C. Farzad, N. Hong et al., Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 117, 971–977 (2007)

S. Bonner-Weir, D.F. Trent, G.C. Weir, Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest. 71, 1544–1553 (1983)

X. Xiao, Z. Chen, C. Shiota, K. Prasadan, P. Guo et al., No evidence for beta cell neogenesis in murine adult pancreas. J. Clin. Invest. 123, 2207–2217 (2013)

M.M. Rankin, C.J. Wilbur, K. Rak, E.J. Shields, A. Granger, J.A. Kushner, beta-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 62, 1634–1645 (2013)

S.I. Tschen, S. Dhawan, T. Gurlo, A. Bhushan, Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58, 1312–1320 (2009)

M.M. Rankin, J.A. Kushner, Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58, 1365–1372 (2009)

R. Barnett, Type 1 diabetes. Lancet 391, 195 (2018)

S.A. Bartow, K. Mukai, J. Rosai, Pseudoneoplastic proliferation of endocrine cells in pancreatic fibrosis. Cancer 47, 2627–2633 (1981)

G. Kloppel, G. Bommer, G. Commandeur, P. Heitz, The endocrine pancreas in chronic pancreatitis. Immunocytochemical and ultrastructural studies. Virchows Arch. A Pathol. Anat. Histol. 377, 157–174 (1978)

X. Xu, J. D’Hoker, G. Stange, S. Bonne, N. De Leu et al., Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008)

P.S. Misra, M.C. Nostro, Islet-resident endocrine progenitors: a new hope for beta cell PROCReation? Cell Stem Cell 26, 471–473 (2020)

A. Criscimanna, J.A. Speicher, G. Houshmand, C. Shiota, K. Prasadan et al., Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 141, 1451–1462 (2011), 62 e1-6

J. Lardon, N. Huyens, I. Rooman, L. Bouwens, Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch. 444, 61–65 (2004)

D. Gu, M. Arnush, N. Sarvetnick, Endocrine/exocrine intermediate cells in streptozotocin-treated Ins-IFN-gamma transgenic mice. Pancreas 15, 246–250 (1997)

F.C. Pan, E.D. Bankaitis, D. Boyer, X. Xu, M. Van de Casteele et al., Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764 (2013)

F. Thorel, V. Nepote, I. Avril, K. Kohno, R. Desgraz et al., Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464, 1149–1154 (2010)

S. Chera, D. Baronnier, L. Ghila, V. Cigliola, J.N. Jensen et al., Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514, 503–507 (2014)

D. Gu, N. Sarvetnick, Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development 118, 33–46 (1993)

S.A. Blaine, K.C. Ray, R. Anunobi, M.A. Gannon, M.K. Washington, A.L. Means, Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 137, 2289–2296 (2010)

L. Rosenberg, M. Lipsett, J.W. Yoon, M. Prentki, R. Wang et al., A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6J mice. Ann. Surg. 240, 875–884 (2004)

S. Bonner-Weir, L.A. Baxter, G.T. Schuppin, F.E. Smith, A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720 (1993)

R.N. Wang, J.F. Rehfeld, F.C. Nielsen, G. Kloppel, Expression of gastrin and transforming growth factor-alpha during duct to islet cell differentiation in the pancreas of duct-ligated adult rats. Diabetologia 40, 887–893 (1997)

C. Bonal, F. Thorel, A. Ait-Lounis, W. Reith, A. Trumpp, P.L. Herrera, Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136, 309 – 19 e9 (2009)

V. Fendrich, F. Esni, M.V. Garay, G. Feldmann, N. Habbe et al., Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135, 621–631 (2008)

D.E. Bockman, Morphology of the exocrine pancreas related to pancreatitis. Microsc. Res. Tech. 37, 509–519 (1997)

M. Ebert, M. Yokoyama, T. Ishiwata, H. Friess, M.W. Buchler et al., Alteration of fibroblast growth factor and receptor expression after acute pancreatitis in humans. Pancreas 18, 240–246 (1999)

A. Zimmermann, B. Gloor, A. Kappeler, W. Uhl, H. Friess, M.W. Buchler, Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans. Gut 51, 574–578 (2002)

A. Sharma, D.H. Zangen, P. Reitz, M. Taneja, M.E. Lissauer et al., The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 48, 507–513 (1999)

A. Maitra, N. Fukushima, K. Takaori, R.H. Hruban, Precursors to invasive pancreatic cancer. Adv. Anat. Pathol. 12, 81–91 (2005)

O.J. De La, L.L. Emerson, J.L. Goodman, S.C. Froebe, B.E. Illum et al., Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc. Natl. Acad. Sci. U S A 105, 18907–18912 (2008)

C. Guerra, M. Collado, C. Navas, A.J. Schuhmacher, I. Hernandez-Porras et al., Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19, 728–739 (2011)

T. Furukawa, G. Kloppel, N. Volkan Adsay, J. Albores-Saavedra, N. Fukushima et al., Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 447, 794–799 (2005)

M. Kosmahl, U. Pauser, K. Peters, B. Sipos, J. Luttges et al., Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Arch. 445, 168–178 (2004)

R.H. Hruban, K. Takaori, D.S. Klimstra, N.V. Adsay, J. Albores-Saavedra et al., An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am. J. Surg. Pathol. 28, 977–987 (2004)

J. Yamaguchi, M. Mino-Kenudson, A.S. Liss, S. Chowdhury, T.C. Wang et al., Loss of trefoil factor 2 from pancreatic duct glands promotes formation of intraductal papillary mucinous neoplasms in mice. Gastroenterology 151, 1232-1244 e10 (2016)

G. von Figura, A. Fukuda, N. Roy, M.E. Liku, J.P. Morris Iv et al., The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat. Cell. Biol. 16, 255–267 (2014)

S.C. Morris JPt, Wang, M. Hebrok, KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010)

A. Inada, C. Nienaber, S. Fonseca, S. Bonner-Weir, Timing and expression pattern of carbonic anhydrase II in pancreas. Dev. Dyn. 235, 1571–1577 (2006)

B. Burghardt, M.L. Elkaer, T.H. Kwon, G.Z. Racz, G. Varga et al., Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut 52, 1008–1016 (2003)

D. Kopinke, L.C. Murtaugh, Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev. Biol. 10, 38 (2010)

F. Zhang, D. Ma, T. Liu, Y.H. Liu, J. Guo et al., Expansion and maintenance of CD133-expressing pancreatic ductal epithelial cells by inhibition of TGF-beta signaling. Stem Cells Dev. 28, 1236–1252 (2019)

C.R. Scoggins, I.M. Meszoely, M. Wada, A.L. Means, L. Yang, S.D. Leach, p53-dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G827–G836 (2000)

G. Kilic, J. Wang, B. Sosa-Pineda, Osteopontin is a novel marker of pancreatic ductal tissues and of undifferentiated pancreatic precursors in mice. Dev. Dyn. 235, 1659–1667 (2006)

M.A. Collins, F. Bednar, Y. Zhang, J.C. Brisset, S. Galban et al., Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012)

B. Schmied, G. Liu, M.P. Moyer, I.S. Hernberg, W. Sanger et al., Induction of adenocarcinoma from hamster pancreatic islet cells treated with N-nitrosobis(2-oxopropyl)amine in vitro. Carcinogenesis 20, 317–324 (1999)

B.M. Schmied, A. Ulrich, H. Matsuzaki, X. Ding, C. Ricordi et al., Transdifferentiation of human islet cells in a long-term culture. Pancreas 23, 157–171 (2001)

M.T. Yip-Schneider, D.S. Barnard, S.D. Billings, L. Cheng, D.K. Heilman et al., Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 21, 139–146 (2000)

J.K. Colby, R.D. Klein, M.J. McArthur, C.J. Conti, K. Kiguchi et al., Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia 10, 782–796 (2008)

H.M. Schuller, G. Kabalka, G. Smith, A. Mereddy, M. Akula, M. Cekanova, Detection of overexpressed COX-2 in precancerous lesions of hamster pancreas and lungs by molecular imaging: implications for early diagnosis and prevention. Chem. Med. Chem. 1, 603–610 (2006)

H. Funahashi, M. Satake, D. Dawson, N.A. Huynh, H.A. Reber et al., Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res. 67, 7068–7071 (2007)

H.C. Crawford, C.R. Scoggins, M.K. Washington, L.M. Matrisian, S.D. Leach, Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J. Clin. Invest. 109, 1437–1444 (2002)

J.K. Bray, O.A. Elgamal, J. Jiang, L.S. Wright, D.S. Sutaria et al., Loss of RE-1 silencing transcription factor accelerates exocrine damage from pancreatic injury. Cell. Death Dis. 11, 138 (2020)

J. Wang, G. Kilic, M. Aydin, Z. Burke, G. Oliver, B. Sosa-Pineda, Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005)

Y. Drosos, G. Neale, J. Ye, L. Paul, E. Kuliyev et al., Prox1-heterozygosis sensitizes the pancreas to oncogenic Kras-induced neoplastic transformation. Neoplasia 18, 172–184 (2016)

C.M. Benitez, W.R. Goodyer, S.K. Kim, Deconstructing pancreas developmental biology. Cold Spring Harb. Perspect. Biol. 4 (2012)

H.L. Larsen, A. Grapin-Botton, The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell. Dev. Biol. 66, 51–68 (2017)

A. Apelqvist, H. Li, L. Sommer, P. Beatus, D.J. Anderson et al., Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999)

J. Jensen, E.E. Pedersen, P. Galante, J. Hald, R.S. Heller et al., Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000)

L.C. Murtaugh, B.Z. Stanger, K.M. Kwan, D.A. Melton, Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl. Acad. Sci. U S A 100, 14920–14925 (2003)

J. Hald, J.P. Hjorth, M.S. German, O.D. Madsen, P. Serup, J. Jensen, Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev. Biol. 260, 426–437 (2003)

F. Esni, B. Ghosh, A.V. Biankin, J.W. Lin, M.A. Albert et al., Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 131, 4213–4224 (2004)

P.A. Seymour, C.A. Collin, A.R. Egeskov-Madsen, M.C. Jorgensen, H. Shimojo et al., Jag1 modulates an oscillatory Dll1-Notch-Hes1 signaling module to coordinate growth and fate of pancreatic progenitors. Dev. Cell 52, 731–747 (2020). (e8)

E.T. Sawey, H.C. Crawford, Metalloproteinases and cell fate: Notch just ADAMs anymore. Cell Cycle 7, 566–569 (2008)

G.Y. Liou, H. Doppler, U.B. Braun, R. Panayiotou, M. Scotti Buzhardt et al., Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia. Nat. Commun. 6, 6200 (2015)

F. Oswald, S. Liptay, G. Adler, R.M. Schmid, NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol. Cell. Biol. 18, 2077–2088 (1998)

L.C. Murtaugh, The what, where, when and how of Wnt/beta-catenin signaling in pancreas development. Organogenesis 4, 81–86 (2008)

K. Scheibner, M. Bakhti, A. Bastidas-Ponce, H. Lickert, Wnt signaling: implications in endoderm development and pancreas organogenesis. Curr. Opin. Cell. Biol. 61, 48–55 (2019)

N. Sharon, J. Vanderhooft, J. Straubhaar, J. Mueller, R. Chawla et al., Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell. Rep. 27, 2281-2291 e5 (2019)

J. Dessimoz, C. Bonnard, J. Huelsken, A. Grapin-Botton, Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr. Biol. 15, 1677–1683 (2005)

L.C. Murtaugh, A.C. Law, Y. Dor, D.A. Melton, Beta-catenin is essential for pancreatic acinar but not islet development. Development 132, 4663–4674 (2005)

J.M. Wells, F. Esni, G.P. Boivin, B.J. Aronow, W. Stuart et al., Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev. Biol. 7, 4 (2007)

E. Wauters, V.J. Sanchez-Arevalo Lobo, A.V. Pinho, A. Mawson, D. Herranz et al., Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer. Cancer Res. 73, 2357–2367 (2013)

C. Gao, G. Chen, D.H. Zhang, J. Zhang, S.F. Kuan et al., PYK2 is involved in premalignant acinar cell reprogramming and pancreatic ductal adenocarcinoma maintenance by phosphorylating beta-catenin(Y654). Cell. Mol. Gastroenterol. Hepatol. 8, 561–578 (2019)

M. Hebrok, S.K. Kim, D.A. Melton, Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998)

S.K. Kim, D.A. Melton, Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc. Natl. Acad. Sci. U S A 95, 13036–13041 (1998)

H. Kawahira, N.H. Ma, E.S. Tzanakakis, A.P. McMahon, P.T. Chuang, M. Hebrok, Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development 130, 4871–4879 (2003)

J.K. Mfopou, L. Bouwens, Hedgehog signals in pancreatic differentiation from embryonic stem cells: revisiting the neglected. Differentiation 76, 107–117 (2008)

P.A. Seymour, K.K. Freude, M.N. Tran, E.E. Mayes, J. Jensen et al., SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc. Natl. Acad. Sci. U S A 104, 1865–1870 (2007)

J.L. Kopp, G. von Figura, E. Mayes, F.F. Liu, C.L. Dubois et al., Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22, 737–750 (2012)

P. Jeannot, C. Callot, R. Baer, N. Duquesnes, C. Guerra et al., Loss of p27Kip(1) promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget 6, 35880–35892 (2015)

C.H. Wong, Y.J. Li, Y.C. Chen, Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer. World J. Gastroenterol. 22, 7046–7057 (2016)

E. Quilichini, M. Fabre, T. Dirami, A. Stedman, M. De Vas et al., Pancreatic ductal deletion of Hnf1b disrupts exocrine homeostasis, leads to pancreatitis, and facilitates tumorigenesis. Cell. Mol. Gastroenterol. Hepatol. 8, 487–511 (2019)

K.K. Das, S. Heeg, J.R. Pitarresi, M. Reichert, B. Bakir et al., ETV5 regulates ductal morphogenesis with Sox9 and is critical for regeneration from pancreatitis. Dev. Dyn. 247, 854–866 (2018)

V. Fendrich, F. Jendryschek, S. Beeck, M. Albers, M. Lauth et al., Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury. Oncogene 37, 1845–1856 (2018)

H. Zhou, Y. Qin, S. Ji, J. Ling, J. Fu et al., SOX9 activity is induced by oncogenic Kras to affect MDC1 and MCMs expression in pancreatic cancer. Oncogene 37, 912–923 (2018)

S. Beel, L. Kolloch, L.H. Apken, L. Jurgens, A. Bolle et al., kappaB-Ras and Ral GTPases regulate acinar to ductal metaplasia during pancreatic adenocarcinoma development and pancreatitis. Nat. Commun. 11, 3409 (2020)

H.P. Shih, J.L. Kopp, M. Sandhu, C.L. Dubois, P.A. Seymour et al., A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139, 2488–2499 (2012)

E. Liang, Y. Lu, Y. Shi, Q. Zhou, F. Zhi, MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity. Oncogene 39, 6437–6450 (2020)

A. Rodolosse, E. Chalaux, T. Adell, H. Hagege, A. Skoudy, F.X. Real, PTF1alpha/p48 transcription factor couples proliferation and differentiation in the exocrine pancreas [corrected]. Gastroenterology 127, 937–949 (2004)

S. Benitz, I. Regel, T. Reinhard, A. Popp, I. Schaffer et al., Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget 7, 11424–11433 (2016)

S. Afelik, X. Qu, E. Hasrouni, M.A. Bukys, T. Deering et al., Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells. Development 139, 1744–1753 (2012)

F.C. Lynn, S.B. Smith, M.E. Wilson, K.Y. Yang, N. Nekrep, M.S. German, Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc. Natl. Acad. Sci. U S A 104, 10500–10505 (2007)

N. Thompson, E. Gesina, P. Scheinert, P. Bucher, A. Grapin-Botton, RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol. Cell. Biol. 32, 1189–1199 (2012)

B.L. Jakubison, P.G. Schweickert, S.E. Moser, Y. Yang, H. Gao et al., Induced PTF1a expression in pancreatic ductal adenocarcinoma cells activates acinar gene networks, reduces tumorigenic properties, and sensitizes cells to gemcitabine treatment. Mol. Oncol. 12, 1104–1124 (2018)

T. Miyatsuka, H. Kaneto, T. Shiraiwa, T.A. Matsuoka, K. Yamamoto et al., Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation. Genes Dev. 20, 1435–1440 (2006)

J.Y. Park, S.M. Hong, D.S. Klimstra, M.G. Goggins, A. Maitra, R.H. Hruban, Pdx1 expression in pancreatic precursor lesions and neoplasms. Appl. Immunohistochem. Mol. Morphol. 19, 444–449 (2011)

K. Ganguly, S.R. Krishn, S. Rachagani, R. Jahan, A. Shah et al., Secretory mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Res. 81, 91–102 (2021)

H. Hui, R. Perfetti, Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur. J. Endocrinol. 146, 129–141 (2002)

P. Jacquemin, S.M. Durviaux, J. Jensen, C. Godfraind, G. Gradwohl et al., Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell. Biol. 20, 4445–4454 (2000)

P. Jacquemin, F.P. Lemaigre, G.G. Rousseau, The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev. Biol. 258, 105–116 (2003)

Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, D.A. Melton, In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008)

H.W. Clayton, A.B. Osipovich, J.S. Stancill, J.D. Schneider, P.G. Vianna et al., Pancreatic inflammation redirects acinar to beta cell reprogramming. Cell. Rep. 17, 2028–2041 (2016)

C. Navas, I. Hernandez-Porras, A.J. Schuhmacher, M. Sibilia, C. Guerra, M. Barbacid, EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 22, 318–330 (2012)

R. Baer, C. Cintas, M. Dufresne, S. Cassant-Sourdy, N. Schonhuber et al., Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110alpha. Genes Dev. 28, 2621–2635 (2014)

Y. Yamanaka, H. Friess, M. Buchler, H.G. Beger, L.I. Gold, M. Korc, Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas. Diabetes 42, 746–756 (1993)

C.A. Crisera, M.I. Rose, P.R. Connelly, M. Li, K.L. Colen et al., The ontogeny of TGF-beta1, -beta2, -beta3, and TGF-beta receptor-II expression in the pancreas: implications for regulation of growth and differentiation. J. Pediatr. Surg. 34, 689 – 93; discussion 93 – 4 (1999)

S.G. Rane, J.H. Lee, H.M. Lin, Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev 17, 107–119 (2006)

Y. Totsuka, M. Tabuchi, I. Kojima, Y. Eto, H. Shibai, E. Ogata, Stimulation of insulin secretion by transforming growth factor-beta. Biochem. Biophys. Res. Commun. 158, 1060–1065 (1989)

Y. Sayo, H. Hosokawa, H. Imachi, K. Murao, M. Sato et al., Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells. Eur. J. Biochem. 267, 971–978 (2000)

J. Ahnfelt-Ronne, P. Ravassard, C. Pardanaud-Glavieux, R. Scharfmann, P. Serup, Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes 59, 1948–1956 (2010)

H. Hua, Y.Q. Zhang, S. Dabernat, M. Kritzik, D. Dietz et al., BMP4 regulates pancreatic progenitor cell expansion through Id2. J. Biol. Chem. 281, 13574–13580 (2006)

J. Goulley, U. Dahl, N. Baeza, Y. Mishina, H. Edlund, BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell. Metab. 5, 207–219 (2007)

Y. Cao, W. Yang, M.A. Tyler, X. Gao, C. Duan et al., Noggin attenuates cerulein-induced acute pancreatitis and impaired autophagy. Pancreas 42, 301–307 (2013)

Y. Cao, M. Drake, J. Davis, B. Yang, T.C. Ko, Opposing roles of BMP and TGF-beta signaling pathways in pancreatitis: mechanisms and therapeutic implication. Adv. Res. Gastroenterol. Hepatol. 13 (2019)

Y. Nagashio, H. Ueno, M. Imamura, H. Asaumi, S. Watanabe et al., Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab. Invest. 84, 1610–1618 (2004)

M.A. Shields, K. Ebine, V. Sahai, K. Kumar, K. Siddiqui et al., Snail cooperates with KrasG12D to promote pancreatic fibrosis. Mol. Cancer Res. 11, 1078–1087 (2013)

K. Ebine, C.R. Chow, B.T. DeCant, H.Z. Hattaway, P.J. Grippo et al., Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia. Sci. Rep. 6, 29133 (2016)

D.E. Levy, C.K. Lee, What does Stat3 do? J. Clin. Invest. 109, 1143–1148 (2002)

N.M. Chandler, J.J. Canete, M.P. Callery, Increased expression of NF-kappa B subunits in human pancreatic cancer cells. J. Surg. Res. 118, 9–14 (2004)

I. Gukovsky, A.S. Gukovskaya, T.A. Blinman, V. Zaninovic, S.J. Pandol, Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am. J. Physiol. 275, G1402–G1414 (1998)

J. Ling, Y. Kang, R. Zhao, Q. Xia, D.F. Lee et al., KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21, 105–120 (2012)

L.K. Chan, M. Gerstenlauer, B. Konukiewitz, K. Steiger, W. Weichert et al., Epithelial NEMO/IKKgamma limits fibrosis and promotes regeneration during pancreatitis. Gut 66, 1995–2007 (2017)

G.Y. Liou, H. Doppler, B. Necela, M. Krishna, H.C. Crawford et al., Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-kappaB and MMPs. J. Cell. Biol. 202, 563–577 (2013)

A. Fukuda, S.C. Wang, A.E. Morris JPt, Folias, A. Liou et al., Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011)

R.B. Corcoran, G. Contino, V. Deshpande, A. Tzatsos, C. Conrad et al., STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 71, 5020–5029 (2011)

R. Gruber, R. Panayiotou, E. Nye, B. Spencer-Dene, G. Stamp, A. Behrens, YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology 151, 526–539 (2016)

M. Perusina Lanfranca, Y. Zhang, A. Girgis, S. Kasselman, J. Lazarus et al., Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology 158, 1417-1432 e11 (2020)

J. Reichrath, S. Reichrath, A snapshot of the molecular biology of notch signaling: challenges and promises. Adv. Exp. Med. Biol. 1227, 1–7 (2020)

M. Rubey, N.F. Chhabra, D. Gradinger, A. Sanz-Moreno, H. Lickert et al., DLL1- and DLL4-mediated notch signaling is essential for adult pancreatic islet homeostasis. Diabetes 69, 915–926 (2020)

J.T. Siveke, C. Lubeseder-Martellato, M. Lee, P.K. Mazur, H. Nakhai et al., Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 134, 544–555 (2008)

W.C. Chung, L. Challagundla, Y. Zhou, M. Li, A. Atfi, K. Xu, Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci. Alliance 4 (2021)

Y. Nishikawa, Y. Kodama, M. Shiokawa, T. Matsumori, S. Marui et al., Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Oncogene 38, 4283–4296 (2019)

A. Hidalgo-Sastre, R.L. Brodylo, C. Lubeseder-Martellato, B. Sipos, K. Steiger et al., Hes1 controls exocrine cell plasticity and restricts development of pancreatic ductal adenocarcinoma in a mouse model. Am. J. Pathol. 186, 2934–2944 (2016)

C.L. Pin, J.M. Rukstalis, C. Johnson, S.F. Konieczny, The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J. Cell. Biol. 155, 519–530 (2001)

E.T. Sawey, J.A. Johnson, H.C. Crawford, Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc. Natl. Acad. Sci. U S A 104, 19327–19332 (2007)

D.S. Lorberbaum, L. Sussel, A Notch in time: Spatiotemporal analysis of Notch signaling during pancreas development. Dev. Cell 52, 681–682 (2020)

S. Chiba, Notch signaling in stem cell systems. Stem Cells 24, 2437–2447 (2006)

X.Y. Li, W.J. Zhai, C.B. Teng, Notch Signaling in Pancreatic Development. Int. J. Mol. Sci. 17 (2015)

P.W. Heiser, J. Lau, M.M. Taketo, P.L. Herrera, M. Hebrok, Stabilization of beta-catenin impacts pancreas growth. Development 133, 2023–2032 (2006)

M.D. Keefe, H. Wang, O.J. De La, A. Khan, M.A. Firpo, L.C. Murtaugh, beta-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice. Dis. Model. Mech. 5, 503–514 (2012)

B.K. Baumgartner, G. Cash, H. Hansen, S. Ostler, L.C. Murtaugh, Distinct requirements for beta-catenin in pancreatic epithelial growth and patterning. Dev. Biol. 391, 89–98 (2014)

Y. Zhang, W. Morris JPt, Yan, H.K. Schofield, A. Gurney et al., Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73, 4909–4922 (2013)

P.W. Heiser, D.A. Cano, L. Landsman, G.E. Kim, J.G. Kench et al., Stabilization of beta-catenin induces pancreas tumor formation. Gastroenterology 135, 1288–1300 (2008)

A. Apelqvist, U. Ahlgren, H. Edlund, Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr. Biol. 7, 801–804 (1997)

S. Roy, T. Qiao, C. Wolff, P.W. Ingham, Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr. Biol. 11, 1358–1363 (2001)

S.P. Thayer, M.P. di Magliano, P.W. Heiser, C.M. Nielsen, D.J. Roberts et al., Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003)

H. Kayed, J. Kleeff, T. Osman, S. Keleg, M.W. Buchler, H. Friess, Hedgehog signaling in the normal and diseased pancreas. Pancreas 32, 119–129 (2006)

D.A. Cano, M. Hebrok, Hedgehog spikes pancreas regeneration. Gastroenterology 135, 347–351 (2008)

F. Wu, Y. Zhang, B. Sun, A.P. McMahon, Y. Wang, Hedgehog signaling: from basic biology to cancer therapy. Cell. Chem. Biol. 24, 252–280 (2017)

S. Lodh, E.A. O’Hare, N.A. Zaghloul, Primary cilia in pancreatic development and disease. Birth Defects Res. C. Embryo Today 102, 139–158 (2014)

F.K. Bangs, P. Miller, E. O’Neill, Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis. Model Mech. 13 (2020)

D.A. Cano, N.S. Murcia, G.J. Pazour, M. Hebrok, Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131, 3457–3467 (2004)

X. Liu, J.R. Pitarresi, M.C. Cuitino, R.D. Kladney, S.A. Woelke et al., Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev. 30, 1943–1955 (2016)

F. Bangs, K.V. Anderson, Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9 (2017)

O. Lioubinski, M. Muller, M. Wegner, M. Sander, Expression of Sox transcription factors in the developing mouse pancreas. Dev. Dyn. 227, 402–408 (2003)

J.L. Gnerlich, X. Ding, C. Joyce, K. Turner, C.D. Johnson et al., Increased SOX9 expression in premalignant and malignant pancreatic neoplasms. Ann. Surg. Oncol. 26, 628–634 (2019)

A. Besson, S.F. Dowdy, J.M. Roberts, CDK inhibitors: cell cycle regulators and beyond. Dev. Cell 14, 159–169 (2008)

S. Diersch, P. Wenzel, M. Szameitat, P. Eser, M.C. Paul et al., Efemp1 and p27(Kip1) modulate responsiveness of pancreatic cancer cells towards a dual PI3K/mTOR inhibitor in preclinical models. Oncotarget 4, 277–288 (2013)

M. Reichert, S. Takano, J. von Burstin, S.B. Kim, J.S. Lee et al., The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes Dev. 27, 288–300 (2013)

A. Cano, M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell. Biol. 2, 76–83 (2000)

A. Grimont, A.V. Pinho, M.J. Cowley, C. Augereau, A. Mawson et al., SOX9 regulates ERBB signalling in pancreatic cancer development. Gut 64, 1790–1799 (2015)

J.S. Burlison, Q. Long, Y. Fujitani, C.V. Wright, M.A. Magnuson, Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev. Biol. 316, 74–86 (2008)

A. Krapp, M. Knofler, S. Frutiger, G.J. Hughes, O. Hagenbuchle, P.K. Wellauer, The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J. 15, 4317–4329 (1996)

M. Jiang, A.C. Azevedo-Pouly, T.G. Deering, C.Q. Hoang, D. DiRenzo et al., MIST1 and PTF1 collaborate in feed-forward regulatory loops that maintain the pancreatic acinar phenotype in adult mice. Mol. Cell. Biol. 36, 2945–2955 (2016)

T. Masui, Q. Long, T.M. Beres, M.A. Magnuson, R.J. MacDonald, Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev. 21, 2629–2643 (2007)

S.D. Rose, G.H. Swift, M.J. Peyton, R.E. Hammer, R.J. MacDonald, The role of PTF1-P48 in pancreatic acinar gene expression. J. Biol. Chem. 276, 44018–44026 (2001)

T.M. Beres, T. Masui, G.H. Swift, L. Shi, R.M. Henke, R.J. MacDonald, PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol. Cell. Biol. 26, 117–130 (2006)

A.E. Schaffer, K.K. Freude, S.B. Nelson, M. Sander, Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev. Cell 18, 1022–1029 (2010)

T. Masui, G.H. Swift, M.A. Hale, D.M. Meredith, J.E. Johnson, R.J. Macdonald, Transcriptional autoregulation controls pancreatic Ptf1a expression during development and adulthood. Mol. Cell. Biol. 28, 5458–5468 (2008)

P. Martinelli, M. Canamero, N. del Pozo, F. Madriles, A. Zapata, F.X. Real, Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 62, 1481–1488 (2013)

P. Martinelli, F. Madriles, M. Canamero, E.C. Pau, N.D. Pozo et al., The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice. Gut 65, 476–486 (2016)

M.A. Hale, G.H. Swift, C.Q. Hoang, T.G. Deering, T. Masui et al., The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 141, 3123–3133 (2014)

M. Flandez, J. Cendrowski, M. Canamero, A. Salas, N. del Pozo et al., Nr5a2 heterozygosity sensitises to, and cooperates with, inflammation in KRas(G12V)-driven pancreatic tumourigenesis. Gut 63, 647–655 (2014)

T. Miyatsuka, T.A. Matsuoka, T. Shiraiwa, T. Yamamoto, I. Kojima, H. Kaneto, Ptf1a and RBP-J cooperate in activating Pdx1 gene expression through binding to Area III. Biochem. Biophys. Res. Commun. 362, 905–909 (2007)

P.O. Wiebe, J.D. Kormish, V.T. Roper, Y. Fujitani, N.I. Alston et al., Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol. Cell. Biol. 27, 4093–4104 (2007)

M.F. Offield, T.L. Jetton, P.A. Labosky, M. Ray, R.W. Stein et al., PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996)

S. Ashizawa, F.C. Brunicardi, X.P. Wang, PDX-1 and the pancreas. Pancreas 28, 109–120 (2004)

G. Zhou, J. Yu, A. Wang, S.H. Liu, J. Sinnett-Smith et al., Metformin restrains pancreatic duodenal homeobox-1 (PDX-1) function by inhibiting ERK signaling in pancreatic ductal adenocarcinoma. Curr. Mol. Med. 16, 83–90 (2016)

S.H. Liu, S. Patel, M.C. Gingras, J. Nemunaitis, G. Zhou et al., PDX-1: demonstration of oncogenic properties in pancreatic cancer. Cancer 117, 723–733 (2011)

H. Hui, C. Wright, R. Perfetti, Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes 50, 785–796 (2001)

I. Rooman, Y. Heremans, H. Heimberg, L. Bouwens, Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43, 907–914 (2000)

P.J. Miettinen, M. Huotari, T. Koivisto, J. Ustinov, J. Palgi et al., Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127, 2617–2627 (2000)

P. Miettinen, P. Ormio, E. Hakonen, M. Banerjee, T. Otonkoski, EGF receptor in pancreatic beta-cell mass regulation. Biochem. Soc. Trans. 36, 280–285 (2008)

Z.M. Lof-Ohlin, P. Nyeng, M.E. Bechard, K. Hess, E. Bankaitis et al., Erratum: EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat. Cell. Biol. 19, 1442 (2017)

M. Korc, B. Chandrasekar, Y. Yamanaka, H. Friess, M. Buchier, H.G. Beger, Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J. Clin. Invest. 90, 1352–1360 (1992)

M. Arnush, D. Gu, C. Baugh, S.P. Sawyer, B. Mroczkowski et al., Growth factors in the regenerating pancreas of gamma-interferon transgenic mice. Lab. Invest. 74, 985–990 (1996)

M. Wagner, F.R. Greten, C.K. Weber, S. Koschnick, T. Mattfeldt et al., A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15, 286–293 (2001)

A.L. Means, K.C. Ray, A.B. Singh, M.K. Washington, R.H. Whitehead et al., Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 124, 1020–1036 (2003)

K. Tobita, H. Kijima, S. Dowaki, H. Kashiwagi, Y. Ohtani et al., Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. Int. J. Mol. Med. 11, 305–309 (2003)

C.M. Ardito, B.M. Gruner, K.K. Takeuchi, C. Lubeseder-Martellato, N. Teichmann et al., EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 22, 304–317 (2012)

S.N. Payne, M.E. Maher, N.H. Tran, D.R. Van De Hey, T.M. Foley et al., PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis 4, e169 (2015)

W. Zhang, N. Nandakumar, Y. Shi, M. Manzano, A. Smith et al., Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014)

N.M. Chen, G. Singh, A. Koenig, G.Y. Liou, P. Storz et al., NFATc1 links EGFR signaling to induction of Sox9 transcription and acinar-ductal transdifferentiation in the pancreas. Gastroenterology 148, 1024-1034 e9 (2015)

E. Hessmann, J.S. Zhang, N.M. Chen, M. Hasselluhn, G.Y. Liou et al., NFATc4 regulates Sox9 gene expression in acinar cell plasticity and pancreatic cancer initiation. Stem Cells Int. 2016, 5272498 (2016)

N.M. Chen, A. Neesse, M.L. Dyck, B. Steuber, A.O. Koenig et al., Context-dependent epigenetic regulation of nuclear factor of activated T Cells 1 in pancreatic plasticity. Gastroenterology 152, 1507-1520 e15 (2017)

M.N. Garcia, D. Grasso, M.B. Lopez-Millan, T. Hamidi, C. Loncle et al., IER3 supports KRASG12D-dependent pancreatic cancer development by sustaining ERK1/2 phosphorylation. J. Clin. Invest. 124, 4709–4722 (2014)

T. Gao, D. Zhou, C. Yang, T. Singh, A. Penzo-Mendez et al., Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 144, 1543–1553 (2013), 53 e1

R. Fan, N.G. Kim, B.M. Gumbiner, Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl. Acad. Sci. U S A 110, 2569–2574 (2013)

B.V. Reddy, K.D. Irvine, Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev. Cell 24, 459–471 (2013)

J. Shen, D.P. Ha, G. Zhu, D.F. Rangel, A. Kobielak et al., GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice. Proc. Natl. Acad. Sci. U S A 114, E4020–E4029 (2017)

J. Massague, TGFbeta signalling in context. Nat. Rev. Mol. Cell. Biol. 13, 616–630 (2012)

V. Syed, TGF-beta Signaling in Cancer. J. Cell. Biochem. 117, 1279–1287 (2016)

S. Itoh, P. ten Dijke, Negative regulation of TGF-beta receptor/Smad signal transduction. Curr. Opin. Cell. Biol. 19, 176–184 (2007)

A. Weiss, L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 2, 47–63 (2013)

T. Huang, L. David, V. Mendoza, Y. Yang, M. Villarreal et al., TGF-beta signalling is mediated by two autonomously functioning TbetaRI:TbetaRII pairs. EMBO J. 30, 1263–1276 (2011)

A. Hata, Y.G. Chen, TGF-beta signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol. 8 (2016)

F. Sanvito, P.L. Herrera, J. Huarte, A. Nichols, R. Montesano et al., TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120, 3451–3462 (1994)

E.P. Bottinger, J.L. Jakubczak, I.S. Roberts, M. Mumy, P. Hemmati et al., Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 16, 2621–2633 (1997)

F. Miralles, P. Czernichow, R. Scharfmann, Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125, 1017–1024 (1998)

S.K. Kim, M. Hebrok, Intercellular signals regulating pancreas development and function. Genes Dev. 15, 111–127 (2001)

H. Friess, Z. Lu, A. Andren-Sandberg, P. Berberat, A. Zimmermann et al., Moderate activation of the apoptosis inhibitor bcl-xL worsens the prognosis in pancreatic cancer. Ann. Surg. 228, 780–787 (1998)

S. Wildi, J. Kleeff, J. Mayerle, A. Zimmermann, E.P. Bottinger et al., Suppression of transforming growth factor beta signalling aborts caerulein induced pancreatitis and eliminates restricted stimulation at high caerulein concentrations. Gut 56, 685–692 (2007)

E. Riesle, H. Friess, L. Zhao, M. Wagner, W. Uhl et al., Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair. Gut 40, 73–79 (1997)

K.B. Hahm, Y.H. Im, C. Lee, W.T. Parks, Y.J. Bang et al., Loss of TGF-beta signaling contributes to autoimmune pancreatitis. J. Clin. Invest. 105, 1057–1065 (2000)

K. Grabliauskaite, E. Saponara, T. Reding, M. Bombardo, G.M. Seleznik et al., Inactivation of TGFbeta receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis. J. Pathol. 238, 434–445 (2016)

S. Zhao, Y. Wang, L. Cao, M.M. Ouellette, J.W. Freeman, Expression of oncogenic K-ras and loss of Smad4 cooperate to induce the expression of EGFR and to promote invasion of immortalized human pancreas ductal cells. Int. J. Cancer 127, 2076–2087 (2010)

J. He, X. Sun, K.Q. Qian, X. Liu, Z. Wang, Y. Chen, Protection of cerulein-induced pancreatic fibrosis by pancreas-specific expression of Smad7. Biochim. Biophys. Acta 1792, 56–60 (2009)

H. Friess, Y. Yamanaka, M. Buchler, M. Ebert, H.G. Beger et al., Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105, 1846–1856 (1993)

N. Akanuma, J. Liu, G.Y. Liou, X. Yin, K.R. Bejar et al., Paracrine secretion of transforming growth factor beta by ductal cells promotes acinar-to-ductal metaplasia in cultured human exocrine pancreas tissues. Pancreas 46, 1202–1207 (2017)

R.E. Wilentz, G.H. Su, J.L. Dai, A.B. Sparks, P. Argani et al., Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am. J. Pathol. 156, 37–43 (2000)

D.R. Principe, J.A. Doll, J. Bauer, B. Jung, H.G. Munshi et al., TGF-beta: duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst. 106, djt369 (2014)

D. Padua, J. Massague, Roles of TGFbeta in metastasis. Cell. Res. 19, 89–102 (2009)

M. Pickup, S. Novitskiy, H.L. Moses, The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013)

W. Wang, J.L. Abbruzzese, D.B. Evans, L. Larry, K.R. Cleary, P.J. Chiao, The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res. 5, 119–127 (1999)

J. Daniluk, Y. Liu, D. Deng, J. Chu, H. Huang et al., An NF-kappaB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J. Clin. Invest. 122, 1519–1528 (2012)

S. Herzig, S. Hedrick, I. Morantte, S.H. Koo, F. Galimi, M. Montminy, CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 426, 190–193 (2003)

E. Maniati, M. Bossard, N. Cook, J.B. Candido, N. Emami-Shahri et al., Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J. Clin. Invest. 121, 4685–4699 (2011)

H. Algul, M. Treiber, M. Lesina, H. Nakhai, D. Saur et al., Pancreas-specific RelA/p65 truncation increases susceptibility of acini to inflammation-associated cell death following cerulein pancreatitis. J. Clin. Invest. 117, 1490–1501 (2007)

H. Yamamoto, F. Itoh, S. Iku, Y. Adachi, H. Fukushima et al., Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression. J. Clin. Oncol. 19, 1118–1127 (2001)

S. Vlachos, A.K. Tsaroucha, G. Konstantoudakis, F. Papachristou, G. Trypsianis et al., Serum profiles of M30, M65 and interleukin-17 compared with C-reactive protein in patients with mild and severe acute pancreatitis. J. Hepatobiliary Pancreat. Sci. 21, 911–918 (2014)

R. Jia, M. Tang, L. Qiu, R. Sun, L. Cheng et al., Increased interleukin-23/17 axis and C-reactive protein are associated with severity of acute pancreatitis in patients. Pancreas 44, 321–325 (2015)

J. Ni, G. Hu, J. Xiong, J. Shen, J. Shen et al., Involvement of interleukin-17A in pancreatic damage in rat experimental acute necrotizing pancreatitis. Inflammation 36, 53–65 (2013)

F. McAllister, J.M. Bailey, J. Alsina, C.J. Nirschl, R. Sharma et al., Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014)

C. Loncle, L. Bonjoch, E. Folch-Puy, M.B. Lopez-Millan, S. Lac et al., IL17 functions through the novel REG3beta-JAK2-STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer. Cancer Res. 75, 4852–4862 (2015)

J.G. Norman, G.W. Fink, C. Sexton, G. Carter, Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-1beta gene expression at steady-state and during the systemic stress induced by acute pancreatitis. J. Surg. Res. 63, 231–236 (1996)

F. Marrache, S.P. Tu, G. Bhagat, S. Pendyala, C.H. Osterreicher et al., Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology 135, 1277–1287 (2008)

J.M. Halbleib, W.J. Nelson, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006)

J.D. Serrill, M. Sander, H.P. Shih, Pancreatic exocrine tissue architecture and integrity are maintained by E-cadherin during postnatal development. Sci. Rep. 8, 13451 (2018)

Y. Kaneta, T. Sato, Y. Hikiba, M. Sugimori, S. Sue et al., Loss of pancreatic E-cadherin causes pancreatitis-like changes and contributes to carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 9, 105–119 (2020)

L. Chen, C. Ma, Y. Bian, C. Shao, T. Wang et al., Aberrant expression of STYK1 and E-cadherin confer a poor prognosis for pancreatic cancer patients. Oncotarget 8, 111333–111345 (2017)

A. Aghdassi, M. Sendler, A. Guenther, J. Mayerle, C.O. Behn et al., Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61, 439–448 (2012)

E. Bernstein, S.Y. Kim, M.A. Carmell, E.P. Murchison, H. Alcorn et al., Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003)

K. Endo, H. Weng, N. Kito, Y. Fukushima, N. Iwai, MiR-216a and miR-216b as markers for acute phased pancreatic injury. Biomed. Res. 34, 179–188 (2013)

D.S. Sutaria, J. Jiang, A.C. Azevedo-Pouly, L. Wright, J.A. Bray et al., Knockout of acinar enriched microRNAs in Mice promote duct formation but not pancreatic cancer. Sci. Rep. 9, 11147 (2019)

Y.J. Wang, F. McAllister, J.M. Bailey, S.G. Scott, A.M. Hendley et al., Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS One 9, e113127 (2014)

R. Morris JPt, Greer, H.A. Russ, G. von Figura, G.E. Kim et al., Dicer regulates differentiation and viability during mouse pancreatic cancer initiation. PLoS One 9, e95486 (2014)