Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes

Biointerphases - Tập 2 Số 1 - Trang 21-33 - 2007
Duncan J. McGillivray1,2, Gintaras Valinčius3, David J. Vanderah4, Wilma Febo‐Ayala4, John T. Woodward5, Frank Heinrich1,2, John J. Kasianowicz6, Mathias Lösche1,2
1Carnegie Mellon University 1 Department of Physics, , Pittsburgh, Pennsylvania 15213
2National Institute of Standards and Technology (NIST) 2 Center for Neutron Research, , 100 Bureau Drive, Gaithersburg, Maryland 20899
3Institute of Biochemistry 3 , Mokslininku 12, Vilnius, LT-08662, Lithuania
4NIST Chemical Science and Technology Laboratory 4 Biochemical Sciences Division, , 100 Bureau Drive, Gaithersburg, Maryland 20899
5NIST Physics Laboratory 5 Optical Technology Division, , 100 Bureau Drive, Gaithersburg, Maryland 20899
6NIST Electronics and Electrical Engineering Laboratory 6 Semiconductor Electronics Division, , 100 Bureau Drive, Gaithersburg, Maryland 20899

Tóm tắt

Surface-tethered biomimetic bilayer membranes (tethered bilayer lipid membranes (tBLMs)) were formed on gold surfaces from phospholipids and a synthetic 1-thiahexa(ethylene oxide) lipid, WC14. They were characterized using electrochemical impedance spectroscopy, neutron reflection (NR), and Fourier-transform infrared reflection-absorption spectroscopy (FT-IRRAS) to obtain functional and structural information. The authors found that electrically insulating membranes (conductance and capacitance as low as 1 μS cm−2 and 0.6 μF cm−2, respectively) with high surface coverage (>95% completion of the outer leaflet) can be formed from a range of lipids in a simple two-step process that consists of the formation of a self-assembled monolayer (SAM) and bilayer completion by “rapid solvent exchange.” NR provided a molecularly resolved characterization of the interface architecture and, in particular, the constitution of the space between the tBLM and the solid support. In tBLMs based on SAMs of pure WC14, the hexa(ethylene oxide) tether region had low hydration even though FT-IRRAS showed that this region is structurally disordered. However, on mixed SAMs made from the coadsorption of WC14 with a short-chain “backfiller,” ß-mercaptoethanol, the submembrane spaces between the tBLM and the substrates contained up to 60% exchangeable solvent by volume, as judged from NR and contrast variation of the solvent. Complete and stable “sparsely tethered” BLMs (stBLMs) can be readily prepared from SAMs chemisorbed from solutions with low WC14 proportions. Phospholipids with unsaturated or saturated, straight or branched chains all formed qualitatively similar stBLMs.

Từ khóa


Tài liệu tham khảo

2005, Nature (London), 437, 656, 10.1038/nature04164

1994, Langmuir, 10, 1246, 10.1021/la00016a044

1996, Science, 271, 43, 10.1126/science.271.5245.43

2002, Biomacromolecules, 3, 27, 10.1021/bm0100211

1997, Nature (London), 387, 580, 10.1038/42432

1998, Biophys. J., 74, 1388, 10.1016/S0006-3495(98)77851-8

1998, Langmuir, 14, 839, 10.1021/la970998k

2000, Biophys. J., 79, 1400, 10.1016/S0006-3495(00)76392-2

2003, Langmuir, 19, 5435, 10.1021/la0342060

2003, Langmuir, 19, 5567, 10.1021/la034197v

2003, Biochemistry, 42, 15273, 10.1021/bi035336a

2005, Langmuir, 21, 7476, 10.1021/la050871s

2006, J. Am. Chem. Soc., 128, 1711, 10.1021/ja056972u

2006, MRS Bull., 31, 513, 10.1557/mrs2006.135

2006, MRS Bull., 31, 527, 10.1557/mrs2006.137

2006, Biophys. J., 90, 1241, 10.1529/biophysj.105.069435

2006, Biophys. J., 91, 3313, 10.1529/biophysj.106.091421

2006, MRS Bull., 31, 541, 10.1557/mrs2006.140

2006, MRS Bull., 31, 536, 10.1557/mrs2006.139

2004, Biophys. J., 86, 1763, 10.1016/S0006-3495(04)74244-7

1996, Langmuir, 12, 1343, 10.1021/la950580r

2001, Langmuir, 17, 4858, 10.1021/la001480a

2003, Langmuir, 19, 2294, 10.1021/la026238d

1998, Langmuir, 14, 648, 10.1021/la9711239

2003, Langmuir, 19, 2612, 10.1021/la026990e

2003, Angew. Chem., Int. Ed., 42, 208, 10.1002/anie.200390080

See EPAPS Document No. E-BJIOBN-2-001701 for a complete description of the synthesis and characterization of 20-tetradecyloxy-3 6, 9, 12, 15, 18, 22-heptaoxahexatricontane-1-thiol (WC14). This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

1998, Langmuir, 14, 6916, 10.1021/la9806451

Barsoukov, 2005, Impedance Spectroscopy: Theory, Experiment, and Applications, 27, 10.1002/0471716243

1967, Elektrokhimiya, 3, 349

2002, Curr. Opin. Colloid Interface Sci., 7, 139, 10.1016/S1359-0294(02)00015-8

2006, Rev. Sci. Instrum., 77, 074301, 10.1063/1.2219744

1954, Phys. Rev., 95, 359, 10.1103/PhysRev.95.359

2005, Proc. Natl. Acad. Sci. U.S.A., 102, 9458, 10.1073/pnas.0504034102

1997, Electrochim. Acta, 42, 1325, 10.1016/S0013-4686(96)00269-1

1996, Biochim. Biophys. Acta, 1279, 169, 10.1016/0005-2736(95)00274-X

1987, J. Am. Chem. Soc., 109, 3559, 10.1021/ja00246a011

1998, J. Phys. Chem. B, 102, 426, 10.1021/jp972635z

1995, Macromolecules, 28, 5312, 10.1021/ma00119a022

2003, Langmuir, 19, 3752, 10.1021/la026580q

1999, Rev. Mod. Phys., 71, 779, 10.1103/RevModPhys.71.779

1963, Electrochim. Acta, 8, 751, 10.1016/0013-4686(63)80042-0

1976, Electrochim. Acta, 21, 539, 10.1016/0013-4686(76)85147-X

1999, Eur. Phys. J. B, 8, 583, 10.1007/s100510050725

1988, J. Am. Chem. Soc., 110, 3665, 10.1021/ja00219a055

1988, Biochemistry, 27, 8261, 10.1021/bi00421a041

1972, Science, 173, 720, 10.1126/science.175.4023.720

1975, Proc. Natl. Acad. Sci. U.S.A., 72, 3111, 10.1073/pnas.72.8.3111

2006, J. Phys. Chem. B, 110, 10213, 10.1021/jp0616516

2005, Proc. Natl. Acad. Sci. U.S.A., 102, 9118, 10.1073/pnas.0502723102