Molecular modeling interpretation of IMMS data collected on negative ionization of methyl salicylate using radioactive, corona discharge and photo-ionization

Glenn E. Spangler1
1Technispan LLC, 1209 Malbay Drive, Lutherville, MD, 21093, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schneider BB, Nazarov EG, Covey TR (2012) Peak capacity in differential mobility spectrometry: effects of transport gas and gas modifiers. Int J Ion Mobil Spectrom 15:141–150

Wittmer D, Chen YH, Luckenbill BK, Hill HH Jr (1994) Electrospray ionization ion mobility spectrometry. Anal Chem 66:2348–2355

Cohen MJ, Karasek FW (1970) Plasma chromatography™ – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337

Good A, Durden DA, Kebarle P (1970) Ion-molecule reactions in pure nitrogen anad nitrogen containing traces of water at total pressures 0.5-4 torr. Kinetics of clustering reactions forming H+(H2O)n. J Chem Phys 52:212–221

Griffin GW, Dzidic I, Carroll DI, Stillwell RN, Horning EC (1973) Ion mass assignments based on mobility measurements: validity of plasma chromatographic mass mobility correlations. Anal Chem 45:1204–1209

Spangler GE, Collins CI (1975) Reactant ions in negative ion plasma chromatography. Anal Chem 47:393–402

Nagato K, Kim CS, Adachi M, Okuyama K (2005) An experimental study of ion-induced nucleation using a drift tube ion mobility spectrometer/mass spectrometer and a cluster-differential mobility analyzer/Faraday cup electrometer. J Aerosol Sci 36:1036–1049

Spangler GE (2001) Characterization of the ion-sampling pinhole interface for an ion mobility spectrometer/mass spectrometer system. Int J Mass Spectrom 208:169–191, and references contained therein

Bruins AP (1991) Mass spectrometry with ion sources at atmospheric pressure. Mass Spectrom Rev 10:53–77

Bowers MT (1979) Gas phase ion chemistry, vol 2. Academic Press, NY

Eiceman GA, Nazarov EG, Stone GA (2003) Chemical standards in ion mobility spectrometry. Anal Chim Acta 493:185–194

Adamov A, Mauriala T, Teplov V, Laakia J, Pedersen CS, Kotiaho T, Sysoev AA (2010) Characterization of a high resolution drift tube ion mobility spectrometer with a multi-ion source platform. Int J Mass Spectrom 298:24–29

Bahrami H, Tabrizchi M (2012) Combined corona discharge and UV photoionization source for ion mobility spectrometry. Talanta 97:400–405

Sabo M, Matejċίk S (2013) A corona discharge atmospheric pressure chemical ionization source with selective NO+ formation and its applications for monoaromatic VOC detection. Analyst 138:6907–6912

Sielemann S, Schmidt FL, Baumbach JI (2001) Ion mobility spectrometer with UV-ionization source for the determination of chemical warfare agent simulants. Int J Ion Mobil Spectrom 4:81–84

Spangler GE, Roehl JE, Patel GB, Dorman A (1994) Photoionization ion mobility spectrometer. US Patent 5,338,931

Carrico JP, Sickenberger DW, Spangler GE, Vora KN (1983) Simple electrode design for ion mobility spectrometry. J Phys E Sci Instrum 16:1058–1062

Campbell DN, Spangler GE, Davis RC Jr, Fafaul EF, Carrico JP Jr (1991) All ceramic ion mobility spectrometer cell. US Patent 5,021,654

Spangler GE (1993) Theory and technique for measuring mobility using ion mobility spectrometry. Anal Chem 85:3010–3014

Raizer YP (1991) Gas discharge physics. Springer, Berlin

Dzidic I, Carroll DI, Stillwell RN, Horning EC (1976) Comparison of positive ions formed in nickel-63 and corona discharge ion sources using nitrogen, argon, isobutene, ammonia and nitric oxide as reagents in atmospheric pressure ionization mass spectrometry. Anal Chem 48:1763–1768

Kambara H, Kanomata I (1977) Determination of impurities in gases by atmospheric pressure ionization mass spectrometry. Anal Chem 49:270–275

Spangler GE (2002) Discharge ionization source. US Patent 6,407,382 B1

Spangler GE, Roehl JE (1993) Non-radioactive source development for the XM22 automatic chemical agent alarm and auxiliary equipment. Final report CDRL Sequence Number A018, EIR 2144, contract DAAA15-90-C-030, US Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD 21010. Available to authorized users from HDIAC

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc, Wallingford, CT

Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim, chapt. 1

Fiolhais C, Nogueira F, Marques M (eds) (2003) A primer in density functional theory. Springer, Berlin

Burke K (2007) The ABC of DFT. http://chem.ps.uci.edu/~kieron/dft/book/

Engel E, Dreizler RM (2011) Density functional theory. Springer, Berlin

Gill PMW (2002) Density functional theory (DFT), Hartree–Fock (HF), and the self-consistent field. In Encyclopedia of computational chemistry. Wiley, New York, pp 678–689

Spangler GE (2015) to be published.

Barone V, Adamo C (1997) Toward a general protocol for the study of static and dynamic properties of hydrogen-bonded systems. Int J Quantum Chem 61:429–441

Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571

Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem 96:6630–6636

Singh UC, Kollman PA (1984) An approach to computing electrostatic charges in molecules. J Comput Chem 5:129–145

Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

Crawford CL, Hill HH (2013) Comparison of reactant and analyte ions for 63nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry. Talanta 107:225–232

Khayamian T, Tabrizchi M, Jafari MT (2003) Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetanitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta 59:327–333

Roscioli KM, Davis E, Siems WF, Mariano A, Su W, Guharay SK, Hill HH Jr (2011) Modular ion mobility spectrometer for explosives detection using corona ionization. Anal Chem 83:5965–5971

NIST Chemistry WebBook, Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/ .Accessed 1 April 2015

Baim MA, Eatherton RL, Hill HH Jr (1983) Ion mobility detector for gas chromatography with a direct photoionization source. Anal Chem 55:1761–1766

Bahrami H, Tabrizchi M (2012) Combined corona discharge and UV photoionization source for ion mobility spectrometry. Talanta 97:400–405

Neckers DC (1967) Mechanistic organic photochemistry. Reinhold Publishing Corporation, New York, chapt 5

Luczyński Z, Wincel H (1977) Reactions of the solvated proton system H+[(CH3)2CO]n formed in photoionization of acetone. Int J Mass Spectrom Ion Process 23:37–44

Coyle JD (1986) Introduction to organic photochemistry. Wiley, New York, chapt 4

Gilbert A, Baggott J (1991) Essentials of molecular photochemistry. CRC Press, Boca Raton, chapt 7

Ferguson EE (1975) Ionospheric ion-molecule reactions. In: Ausloos P (ed) Interactions between ions and molecules. Plenum Press, New York, pp 313–339

Huertas ML, Fontan J, Gonzalez J (1978) Evolution times of tropospheric negative ions. Atmos Environ 12:2351–2362

Ferguson EE, Fehsenfeld FC, Albritton DL (1979) Ion chemistry of the earth’s atmosphere. In: Bowers MT (ed) Gas phase ion chemistry, vol 1. Academic Press, New York, chapt 2

Beig G (1993) Two-dimensional model of ion composition in the stratosphere – negative ions. J Geophys Res 98(12):775–781

Capitelli M, Ferreira CM, Gordiets BF, Osipov AL (2000) Plasma kinetics in atmospheric gases. Springer, Berlin

Ewing RG, Waltman MJ (2009) Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge. Int J Ion Mobil Spectrom 12:65–72

NIST Chemistry WebBook, Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/

Lofthus A, Krupenie PH (1977) The spectrum of molecular nitrogen. J Phys Chem Ref Data 6:113–307

Krupenie PH (1972) The spectrum of molecular oxygen. J Phys Chem Ref Data 1:423–534

Eliasson B, Kogelschatz U (1991) Ozone generation with narrow-band UV radiation. Ozone Sci Eng 13:365–373

Ivanov VV, Popov NA, Proshina OV, Rakhimova TV, Rulev GB, Saenko VB (2001) Study of the ozone production and loss during oxygen photolysis in a VUV ozonator chamber. Tech Phys Lett 27:29–31

Chen C, Dong C, Du Y, Cheng S, Han F, Li L, Wang W, Hou K, Li H (2010) Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization. Anal Chem 82:4151–4157

Cheng S, Wang W, Zhou Q, Chen C, Peng L, Hua L, Li Y, Hou K, Li H (2014) Fast switching of CO 3 − (H2O) n and O 2 − (H2O) n reactant ions in dopant-assisted negative photoionization ion mobility spectrometry for explosives detection. Anal Chem 86:2687–2693

Flurer RA, Glish GL, McLuckey SA (1990) Structures of NO 3 − formed via glow discharge in atmospheric gases. J Am Soc Mass Spectrom 1:217–224

Sekimoto K, Takayama M (2007) Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air. Int J Mass Spectrom 261:38–44

Skalny JD, Orszagh J, Mason NJ, Rees JA, Aranda-Gonzalvo Y, Whitmore TD (2008) The mass spectrometric analysis of negative ions extracted from point-to-plane negative corona discharge in ambient air. AIP Conf Proc 993:151–158

Hill CA, Thomas CLP (2003) A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer. Analyst 128:55–60

Sabo M, Pálenίk J, Kučera M, Han H, Wang H, Chu Y, Matejčik S (2010) Atmospheric pressure corona discharge ionization and ion mobility spectrometry/mass spectrometry study of the negative corona discharge in high purity oxygen and oxygen/nitrogen mixtures. Int J Mass Spectrom 293:23–27

Sabo M, Matúška J, Matejčίk S (2011) Specific O 2 − generation in corona discharge for ion mobility spectrometry. Talanta 85:400–405

Posey LA, Johnson MA (1988) Pulsed photoelectron spectroscopy of negative cluster ions: Isolation of three distinguishable forms of N2O 2 − . J Chem Phys 88:5383–5395

Nguyen KA, Gordon MS, Montgomery JA Jr, Michels HH (1994) Structures, bonding, and energetics of N2O2 isomers. J Phys Chem 98:10072–10078

Arnold DW, Neumark DM (1995) Study of N2O2 by photoelectron spectroscopy of N2O 2 − . J Chem Phys 102:7035–7045

Osborn DL, Leahy DJ, Cyr DR, Neumark DM (1996) Photodissociation spectroscopy and dynamics of the N2O 2 − anion. J Chem Phys 104:5026–5039

Tsukuda T, Saeki M, Zhu L, Nagata T (1998) Formation of N3O 3 − anion in (NO) n − : photoelectron spectroscopy and ab initio calculations. Chem Phys Lett 295:416–422

Li R, Continetti E (2002) Studies of the excited state dynamics of N2O2 by dissociative photodetachment of N2O 2 − . J Phys Chem A 106:1183–1189

Snodgrass JT, Roehl CM, van Koppen PAM, Palke WE, Bowers MT (1990) Photodissociation of CO 3 − : product kinetic energy measurements as a probe of excited state potential surfaces and dissociation dynamics. J Chem Phys 92:5935–5943

Jacox ME (1984) Ground-state vibrational energy levels of polyatomic transient molecules. J Phys Chem Ref Data 13:945–1068

Hunton DE, Hofmann M, Lindman TG, Castleman AW Jr. (1985) Photodissociation dynamics of CO 3 − . J Chem Phys 82:134–150. plus references.

Dunbar RC (1979) Ion photodissociation. In: Bowers MT (ed) Gas phase ion chemistry, vol 2. Academic Press, NY

Olsen JF, Burnelle L (1970) Distortions in the trigonally symmetric radicals NO3 and CO 3 − . J Am Chem Soc 92:3659–3664

Penney GW, Voshall RE (1962) Ionization of a gas by radiation from a discharge. Trans AIEE 81:398–403

Sroka W (1965) Vacuum UV emission of oxygen (“gas-ionizing” radiation of a corona discharge). Phys Lett A 14:301–302

Penney GW, Nygren SF, Voshall RE (1964) Photoionization as the secondary mechanism in a townsend breakdown. Trans AIEE 83:203–208

Penney GW, Hummert GT (1970) Photoionization measurements in air, oxygen and nitrogen. J Appl Phys 41:572–577

Aints M, Kudu K, Haljaste A, Plank T (2001) Origin of photoionizing radiation in corona discharges in air. J Phys D 34:905–908

Pancheshnyl S (2015) Photoionization produced by low-current discharges in O2, air, N2 and CO2. Plasma Sources Sci Technol 24:015023

Hunton DE, Hofman M, Lindeman TG, Albertoni CR, Castleman AW Jr. (1985) Photodissociation spectroscopy and dynamics of negative ion clusters. II. CO 3 −  · (H2O)1,2,3. J Chem Phys 82:2884–2895

Smith GP, Lee LC, Cosby PC (1979) Photodissociation and photodetachment of molecular negative ions. VIII. Nitrogen oxides and hydrates, 3500–8250 Å. J Chem Phys 71:4464–4470

Hodges RV, Lee LC, Moseley JT (1980) Photodissociation and photodetachment of molecular negative ions. IX. Atmospheric ions at 2484 and 3511 Å. J Chem Phys 72:2998–3001

Massaro RD, Dai Y, Blaisten-Barojas E (2009) Energetics and vibrational analysis of methyl salicylate isomers. J Phys Chem A 113:10385–10390

Melandri S, Giuliano BM, Maris A, Favero LB, Ottaviani P, Velino B, Caminati W (2007) Methylsalicylate: a rotational spectroscopy study. J Phys Chem A 111:9076–9079

Leasure CS, Fleischer ME, Anderson GK, Eiceman GA (1986) Photoionization in air with ion mobility spectrometry using a hydrogen discharge lamp. Anal Chem 58:2142–2147

Li F, Sielemann S, Schmidt H, Baumbach JI (2001) Photoionization source for ion mobility spectrometer: flashlamp IMS. Int J Ion Mobil Spectrom 4(2):132–135

Spangler GE (2015) Molecular modeling collision cross sections for quasi-molecular product ions of dimethylmethylphosphonate (DMMP) in IMMS using classical and semi-classical scattering theory. Submitted to Analyst

Nowak DM (1983) Mobility and molecular ions of dimethylmethylphosphonate, methylsalicylate and acetone. Technical Report, U.S. Army CSL, APG, MD

Snyder AP, Harden CS, Brittain AH, Kim M-G, Arnold NS, Meuzelaar HLC (1993) Portable hand-held gas chromatography/ion mobility spectrometry device. Anal Chem 65:299–306, references contained therein

Tabrizchi M, Abedi A (2002) A novel electron source for negative ion mobility spectrometry. Int J Mass Spectrom 218:75–85

Abdel-Salem M, Mizuno A, Shimizu K (1997) Ozone generation as influenced by gas flow in corona reactors. J Phys D Appl Phys 30:864–870

Ewing RG, Waltman MJ (2009) Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge. Int J Ion Mobil Spectrom 12:65–72

Ross SK, Bell AJ (2002) Reverse flow corona discharge ionization as applied to ion mobility spectrometry. Int J Mass Spectrom 218:L1–L6

Sabo M, Matúška J (2011) Ion mobility spectrometry for monitoring high-purity oxygen. Anal Chem 83:1985–1989

Taylor SJ, Turner RB, Arnold PD (1997) Corona discharge ionization source. US Patent 5,684,300

Jenkins A, McGann WJ (2004) Ion mobility spectrometer. U.S. Patent 6,690,005