Cơ chế phân tử của khả năng chịu đựng kim loại nặng và sự tiến hóa ở động vật không xương sống

Insect Science - Tập 16 Số 1 - Trang 3-18 - 2009
Thierry Janssens1, Dick Roelofs1, Nico M. van Straalen1
1Department of Animal Ecology, Institute of Ecological Science, VU University, Amsterdam, The Netherlands

Tóm tắt

Tóm tắt

Kể từ khi cách mạng sinh học phân tử diễn ra, kiến thức của chúng ta về các cơ chế phân tử nằm dưới các cơ chế phòng vệ chống lại căng thẳng đã được mở rộng đáng kể. Dưới áp lực chọn lọc mạnh mẽ, nhiều loài động vật có thể tiến hóa để cải thiện khả năng chịu đựng căng thẳng. Điều này có thể đạt được bằng cách thay đổi cấu trúc protein (thông qua các đột biến trong các vùng mã hóa của gen) hoặc bằng cách thay đổi lượng protein (thông qua sự điều chỉnh phiên mã). Loại tiến hóa sau có thể đạt được thông qua việc thay thế trong vùng điều khiển của gen quan tâm (thay đổi cis) hoặc bằng cách thay đổi cấu trúc hoặc lượng của các protein điều hòa phiên mã (thay đổi trans). Hệ thống metallothionein là một trong những hệ thống phản ứng căng thẳng được nghiên cứu nhiều nhất trong ngữ cảnh kim loại nặng. Biểu hiện metallothionein được cho là được điều chỉnh bởi yếu tố phiên mã kim loại 1 (MTF-1); tuy nhiên, cho đến nay, sự tham gia của MTF-1 chỉ được chứng minh cho một số loài động vật có xương sống và Drosophila. Dữ liệu trên động vật không xương sống như giun tròn và giun đất cho thấy rằng có thể có các cơ chế khác để kích thích metallothionein. Một nghiên cứu chi tiết về khả năng chịu đựng Cd đã được thực hiện cho một loài giun đất sống trong đất, Orchesella cincta. Gen metallothionein của loài này được biểu hiện quá mức trong các quần thể ngoài tự nhiên tiếp xúc với kim loại. Phân tích vùng điều khiển metallothionein đã chứng minh sự đa hình sinh học rộng rãi có ý nghĩa chức năng, như đã được chứng minh qua các thí nghiệm sinh học. Trong một nghiên cứu so sánh 20 quần thể khác nhau, tần suất của một alen vùng điều khiển biểu hiện cao có mối tương quan tích cực với nồng độ kim loại trong đất, đặc biệt là Cd. Nghiên cứu về giun đất cho thấy rằng thay đổi cis trong việc điều chỉnh các gen liên quan đến phản ứng căng thẳng của tế bào có thể góp phần vào sự tiến hóa khả năng chịu đựng kim loại.

Từ khóa

#cơ chế phân tử #khả năng chịu đựng kim loại nặng #động vật không xương sống #metallothionein #điều chỉnh phiên mã

Tài liệu tham khảo

10.1289/ehp.02110s5813

Alberts B., 2002, Molecular Biology of the Cell., 1463

10.1016/S0965-1748(02)00089-9

10.1515/BC.1999.026

10.1128/MCB.13.2.993

Berg M.P., 2007, De springstaarten van Nederland: het genus Orchesella (Hexapoda: Entognatha: Collembola), Nederlandse Faunistische Mededelingen, 26, 77

10.1016/S0959-437X(02)00279-4

10.1016/j.biochi.2006.10.001

10.1042/BJ20031677

10.1007/978-3-0348-8847-9_2

10.1074/jbc.273.12.7127

10.1016/0014-5793(95)01544-2

10.1016/j.biochi.2006.07.021

10.1006/enrs.1998.3897

10.1038/sj.hdy.6800669

10.1093/nar/22.15.3167

10.1016/j.pedobi.2006.01.001

10.1371/journal.pbio.0030245

10.1006/bbrc.2002.6517

10.1146/annurev.arplant.53.100301.135154

10.1016/S0166-445X(98)00086-1

10.1139/o92-160

10.1002/(SICI)1098-2795(199705)47:1<39::AID-MRD6>3.0.CO;2-R

10.1126/science.1074170

10.1016/0742-8413(95)02078-0

10.1038/40785

10.1093/nar/22.23.5016

10.1074/jbc.271.42.26233

10.1016/S0305-0491(00)00182-6

10.1093/nar/gkf432

10.1126/science.1080049

10.1105/tpc.104.027839

10.1016/S0014-5793(02)03754-7

10.1016/0742-8413(91)90141-F

10.1016/S0959-437X(99)00002-7

10.1093/emboj/cdg012

10.1111/j.1365-2443.2006.00971.x

10.1128/MCB.26.6.2286-2296.2006

10.1186/gb-2001-2-10-reviews1028

10.1016/S0378-1119(00)00240-7

10.1038/nrg1128

10.1016/S0269-7491(99)00130-X

10.1006/eesa.2000.2007

10.1016/0305-1978(92)90041-B

Freedman J.H., 1993, The novel metallothionein genes of Caenorhabditis elegans–Structural organization and inducible, cell‐specific expression, Journal of Biological Chemistry, 268, 2554, 10.1016/S0021-9258(18)53810-2

10.1016/S0968-0004(02)02076-5

10.1111/j.1432-0436.2004.07202003.x

10.1007/BF02705151

10.1016/S0929-1393(02)00134-8

10.1186/1471-2164-5-74

10.1038/nature03235

10.1002/etc.5620180622

10.1007/s002449900503

10.1016/j.mrfmmm.2003.07.014

10.1016/S0965-1748(01)00058-3

10.1046/j.1432-1327.1999.00016.x

10.1016/S0742-8413(99)00087-0

10.1002/j.1460-2075.1994.tb06581.x

10.1111/j.1558-5646.2007.00105.x

Hopkin S.P., 1997, Biology of the Springtails (Insecta: Collembola)., 344, 10.1093/oso/9780198540847.001.0001

10.1016/S0162-0134(02)00412-9

10.1016/S0959-437X(03)00017-0

10.1186/gb-2007-8-6-r98

10.1007/BF00229605

10.1134/S0026893306060021

10.1016/S0168-9525(01)02310-1

10.1186/1471-2148-7-88

10.1021/es702618s

10.1042/BJ20040504

10.1038/ng1172

10.1016/0013-9327(79)90105-8

10.1016/0076-6879(91)05145-L

10.2307/1541580

10.1016/0269-7491(87)90057-1

10.1002/jemt.10039

Korsloot A., 2004, Environmental Stress and Cellular Response in Arthropods., 10.1201/9781420023336

10.1016/j.abb.2007.03.019

10.1074/jbc.M108313200

10.1007/BF01129208

10.1093/molbev/msg015

10.1038/nature01763

10.1016/S0959-437X(02)00355-6

10.1038/35000615

10.1002/jcb.20738

10.1016/j.ympev.2006.04.021

10.1021/ja01574a064

10.2307/3432607

Maroni G., 1987, Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster, Genetics, 117, 739, 10.1093/genetics/117.4.739

10.1111/j.1558-5646.1996.tb02374.x

10.1073/pnas.231478298

10.1080/10409230091169168

10.1074/jbc.274.42.29655

10.1021/es061992x

10.1126/science.1078607

10.1016/S1470-2045(06)70545-9

10.1016/0925-4773(94)00330-P

Nemer M., 1991, Structure, spatial, and temporal expression of two sea urchin metallothionein genes, SpMTB1 and SpMTA, Journal of Biological Chemistry, 266, 6586, 10.1016/S0021-9258(18)38157-2

10.1016/S0734-9750(02)00025-3

10.1146/annurev.pharmtox.43.100901.140229

10.1093/molbev/msl023

10.1073/pnas.83.16.6025

10.1073/pnas.91.4.1219

10.1016/0048-9697(95)05009-4

10.1007/s00227-005-0156-5

10.2307/2404306

10.1111/j.1558-5646.1993.tb02116.x

10.1007/BF00213314

10.1016/0742-8413(93)90251-F

10.1002/etc.5620150317

10.1021/es0615573

10.1016/S0968-0004(00)01776-X

10.1046/j.1365-294x.2000.01016.x

10.1002/j.1460-2075.1993.tb05780.x

10.1016/j.scitotenv.2006.05.005

10.1371/journal.pbio.0030387

10.1016/j.ibmb.2006.11.013

10.1038/sj.hdy.6800756

10.1016/0166-445X(92)90026-J

10.1016/0168-9525(96)10016-0

10.1046/j.0962-1075.2001.00303.x

10.1002/etc.5620210710

10.1074/jbc.M110631200

10.1038/nature02415

10.1186/1471-2164-8-477

10.1101/gad.9.22.2756

10.1146/annurev.biochem.72.121801.161520

10.1074/jbc.275.13.9377

10.1016/S0269-7491(99)00267-5

Sterenborg I.(2003)Molecular physiology of metal tolerance inOrchesella cincta.The role of metallothionein.PhD thesis VU University Amsterdam .

10.1016/S0965-1748(03)00070-5

10.1002/etc.5620220528

10.1093/oxfordjournals.molbev.a003964

10.1074/jbc.M103605200

10.1021/es049822c

10.1016/S0014-5793(98)00809-6

10.1016/j.jmb.2004.06.050

10.1038/sj.hdy.6800942

Timmermans M.J.T.N.(2005)On the “genetic erosion” hypothesis: Genetic variation in metal‐stressed springtail populations.PhD thesis VU University Amsterdam .

10.1111/j.1365-294X.2005.02548.x

10.1007/s10646-005-0020-x

10.1186/1471-2148-8-83

10.2307/2404269

10.1074/jbc.M102151200

10.1016/S0014-5793(00)01149-2

10.1016/j.pedobi.2004.10.004

10.1046/j.1365-294X.2003.01811.x

10.1163/156854289X00093

Van Straalen N.M., 2005, Cadmium tolerance in a soil arthropod–a model of real‐time microevolution, Entomologische Berichten, 65, 105

Van Straalen N.M., 2006, An Introduction to Ecological Genomics.

10.2307/2403992

10.1074/jbc.M503362200

10.1016/S0167-7799(01)01873-X

Viarengo A., 2000, Antioxidant role of metallothioneins: A comparative overview, Cellular and Molecular Biology, 46, 407

10.1897/02-407

10.1371/journal.pgen.0020165

10.1515/BC.2004.077

10.1016/S0959-440X(02)00296-8

10.1038/291317a0

10.1073/pnas.0507648103

10.1007/s00018-005-5064-9

10.1242/jeb.002592

10.1038/nature02698

10.1038/nrg2063

10.1093/molbev/msg140

10.1016/0014-5793(91)80175-3

10.1128/MCB.21.14.4505-4514.2001

10.1128/MCB.23.23.8471-8485.2003