Molecular level study of carbon isotope fractionation in Knudsen number flows induced by thermo-osmosis
Tài liệu tham khảo
Anzini, 2019, Thermal forces from a microscopic perspective, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.028002
Hottovy, 2012, Thermophoresis of Brownian particles driven by coloured noise, EPL (Europhys. Lett.), 99, 60002, 10.1209/0295-5075/99/60002
Barragan, 2017, Thermo-osmosis in membrane systems: a review, J. Non-Equilibrium Thermodyn., 42, 217, 10.1515/jnet-2016-0088
Denbigh, 1952, The thermo-osmosis of gases through a membrane. II. Experimental, Proc. Roy. Soc. Lond. Math. Phys. Sci., 210, 518
Hoang, 2019, Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: impact of thermodiffusion, Eur. Phys. J. E, 42, 10.1140/epje/i2019-11823-x
Javadpour, 2007, Nanoscale gas flow in shale gas sediments, J. Can. Petrol. Technol., 46, 10.2118/07-10-06
Chen, 2017, Experimental study of high temperature combustion for enhanced shale gas recovery, Energy Fuels, 31, 10003, 10.1021/acs.energyfuels.7b00762
Chen, 2019, Flow transportation inside shale rocks at low-temperature combustion condition: a simple scaling law, Combust. Flame, 199, 114, 10.1016/j.combustflame.2018.10.022
Wang, 2014, Conceptual study of thermal stimulation in shale gas formations, J. Nat. Gas Sci. Eng., 21, 874, 10.1016/j.jngse.2014.10.015
Qu, 2015, Characteristics of stable carbon isotopic composition of shale gas, Natl. Gas Geosci., 26, 1376
Dauphas, 2016, Mass fractionation laws, mass-independent effects, and isotopic anomalies, Annu. Rev. Earth Planet Sci., 44, 10.1146/annurev-earth-060115-012157
Gao, 2017, The gas isotope interpretation tool: a novel method to better predict production decline, AAPG (Am. Assoc. Pet. Geol.) Bull., 101, 1263
Li, 2017, Chemical and isotopic fractionation of shale gas during adsorption and desorption, J. Nanosci. Nanotechnol., 17, 6395, 10.1166/jnn.2017.14438
Bacsik, 2002, Solubility isotope effects in aqueous solutions of methane, J. Chem. Phys., 116, 10816, 10.1063/1.1480012
Zhang, 2001, Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure, Geochem. Cosmochim. Acta, 65, 2723, 10.1016/S0016-7037(01)00601-9
Goel, 2012, Isotope fractionation by diffusion in silicate melts: insights from molecular dynamics simulations, Geochem. Cosmochim. Acta, 93, 205, 10.1016/j.gca.2012.07.008
Gonçalvès, 2018, Analytical expressions for thermo-osmotic permeability of clays, Geophys. Res. Lett., 45, 691, 10.1002/2017GL075904
Gallis, 2002, Calculations of the near-wall thermophoretic force in rarefied gas flow, Phys. Fluids, 14, 4290, 10.1063/1.1518692
Ganti, 2017, Molecular simulation of thermo-osmotic slip, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.038002
Gogoi, 2021, Electro-osmotic flow through nanochannel with different surface charge configurations: a molecular dynamics simulation study, Phys. Fluids, 33, 10.1063/5.0062031
Marbach, 2019, Osmosis, from molecular insights to large-scale applications, Chem. Soc. Rev., 48, 3102, 10.1039/C8CS00420J
Gogoi, 2020, Dehydration of acetic acid using layered graphene oxide (GO) membrane through forward osmosis (FO) process: a molecular dynamics study, Mol. Simulat., 46, 1500, 10.1080/08927022.2020.1849684
Gogoi, 2018, Multilayer graphene oxide membrane in forward osmosis: molecular insights, ACS Appl. Nano Mater., 1, 4450, 10.1021/acsanm.8b00709
Gogoi, 2020, Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes, Nanoscale, 12, 7273, 10.1039/C9NR09288A
Denbigh, 1952, The thermo-osmosis of gases through a membrane I. Theoretical, Proc. Roy. Soc. Lond. Math. Phys. Sci., 210, 377
Gonçalvès, 2010, Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights, J. Colloid Interface Sci., 342, 166, 10.1016/j.jcis.2009.09.056
Monsivais, 2018, Conjugate thermal creep flow in a thin microchannel, Int. J. Therm. Sci., 124, 227, 10.1016/j.ijthermalsci.2017.10.012
Putnam, 2007, Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles, Langmuir, 23, 9221, 10.1021/la700489e
Reith, 1999, On the nature of thermal diffusion in binary Lennard-Jones liquids, J. Chem. Phys., 112
Ash, 1982, Thermo-osmosis of sorbable gases in porous media: Part I: theoretical basis of two methods of mixture separation, J. Membr. Sci., 10, 183, 10.1016/S0376-7388(00)81409-X
Ash, 1997, Thermo-osmosis of sorbable gases in porous media. Part IV. Mixture separation by two procedures, J. Membr. Sci., 125, 41, 10.1016/S0376-7388(96)00109-3
Richter, 2008, Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion, Geochem. Cosmochim. Acta, 72, 206, 10.1016/j.gca.2007.10.016
Lacks, 2012, Isotope fractionation by thermal diffusion in silicate melts, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.065901
Derjaguin, 1941, Thermal osmosis at ordinary temperatures, Dokl. Akad. Nauk SSSR, 32, 622
Han, 2005, Thermophoresis in liquids: a molecular dynamics simulation study, J. Colloid Interface Sci., 284, 339, 10.1016/j.jcis.2004.09.067
Anderson, 1989, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., 21, 61, 10.1146/annurev.fl.21.010189.000425
Derjaguin, 1987, 369
Churaev, 2000
Bregulla, 2016, Thermo-osmotic flow in thin films, Phys. Rev. Lett., 116, 188303, 10.1103/PhysRevLett.116.188303
Fu, 2018, Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: thermodynamics meets hydrodynamics, J. Phys. Chem. Lett., 9, 2086, 10.1021/acs.jpclett.8b00703
Fu, 2017, What controls thermo-osmosis? Molecular simulations show the critical role of interfacial hydrodynamics, Phys. Rev. Lett., 119, 214501, 10.1103/PhysRevLett.119.214501
Turner, 1989, Irreversible thermodynamics—theory and applications, Chem. Eng. Sci., 44, 1747, 10.1016/0009-2509(89)80017-X
Denbigh, 1952, The thermo-osmosis of gases through a membrane. I. Theoretical, Proc. Math. Phys. Eng. Sci., 210, 377
Ganti, 2018, Hamiltonian transformation to compute thermo-osmotic forces, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.068002
Chen, 2021, Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect, Nanoscale, 13, 1696, 10.1039/D0NR06687G
Xia, 2012, Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption, Geochem. Cosmochim. Acta, 77, 489, 10.1016/j.gca.2011.10.014
Zhang, 2020, Gas transport characteristics in shale matrix based on multiple mechanisms, Chem. Eng. J., 386, 124002, 10.1016/j.cej.2019.124002
Zhang, 2019, Review of micro seepage mechanisms in shale gas reservoirs, Int. J. Heat Mass Tran., 139, 144, 10.1016/j.ijheatmasstransfer.2018.09.106
Wu, 2015
Sun, 2020, Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition: pore size and kerogen types, Chem. Eng. J., 398, 124341, 10.1016/j.cej.2020.124341
Li, 2019, Pressure-dependent equilibrium molecular simulation of shale gas and its distribution and motion characteristics in organic-rich nano-slit, Fuel, 237, 1040, 10.1016/j.fuel.2018.10.050
Nan, 2020, Slip length of methane flow under shale reservoir conditions: effect of pore size and pressure, Fuel, 259, 116237, 10.1016/j.fuel.2019.116237
Lin, 2017, Using graphene to simplify the adsorption of methane on shale in MD simulations, Comput. Mater. Sci., 133, 99, 10.1016/j.commatsci.2017.03.010
Martin, 1998, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B, 102, 2569, 10.1021/jp972543+
Frenkel, 2001
Ambrose, 2010, New pore-scale considerations for shale gas in place calculations
Zhang, 2014, Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal, Fuel, 122, 186, 10.1016/j.fuel.2014.01.006
Peng, 1976, New two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 10.1021/i160057a011
Wang, 2019, Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: a grand canonical Monte Carlo simulation study, Chem. Eng. J., 355, 76, 10.1016/j.cej.2018.08.067
Kazemi, 2016, Non-equilibrium molecular dynamics simulation of gas flow in organic nanochannels, J. Nat. Gas Sci. Eng., 33, 1087, 10.1016/j.jngse.2016.05.068
Swope, 1982, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys., 76, 637, 10.1063/1.442716
Linstrom, 2001, The NIST chemistry WebBook:A chemical data resource on the internet, J. Chem. Eng. Data, 46, 1059, 10.1021/je000236i
Bourg, 2010, Isotopic mass dependence of metal cation diffusion coefficients in liquid water, Geochem. Cosmochim. Acta, 74, 2249, 10.1016/j.gca.2010.01.024
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Karniadakis, 2006
Sahebi, 2019, A molecular dynamics study about the mechanisms of liquid thermal transpiration flow in nanotubes, Int. J. Therm. Sci., 136, 9, 10.1016/j.ijthermalsci.2018.10.011
Sobecki, 2019, Phase behavior of hydrocarbons in nano-pores, Fluid Phase Equil., 497, 104, 10.1016/j.fluid.2019.05.025
Wang, 2020, Knudsen pumps: a review, Microsyst. Nanoeng., 6, 26, 10.1038/s41378-020-0135-5
Cao, 2019, A new gas-content-evaluation method for organic-rich shale using the fractionation of carbon isotopes of methane, SPE J., 24, 2574, 10.2118/197043-PA
Tian, 2018, An analytical model for shale gas transport in circular tube pores, Int. J. Heat Mass Tran., 127, 321, 10.1016/j.ijheatmasstransfer.2018.07.046
Wu, 2015, Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs, Ind. Eng. Chem. Res., 54, 3225, 10.1021/ie504030v
Veltzke, 2012, An analytically predictive model for moderately rarefied gas flow, J. Fluid Mech., 698, 406, 10.1017/jfm.2012.98
Chen, 2019, Non-linear gas transport inside an ultra-tight Longmaxi shale core under thermal stimulation conditions, Energy, 186, 10.1016/j.energy.2019.07.176
Mook, 2000, Environmental isotopes in the hydrological cycle, introduction – theory, Methods Rev. Principl. Appl., 1
Ye, 2006, Theoretical investigation of gas separation inside a microchannel by thermal diffusion, Eng. Anal. Bound. Elem., 30, 1006, 10.1016/j.enganabound.2006.03.015
Farago, 2019, A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis, Eur. Phys. J. E, 42, 10.1140/epje/i2019-11898-3
Zhang, 2020, Molecular dynamics simulations about isotope fractionation of methane in shale nanopores, Fuel, 278, 118378, 10.1016/j.fuel.2020.118378
Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng., 18