Molecular level study of carbon isotope fractionation in Knudsen number flows induced by thermo-osmosis

International Journal of Thermal Sciences - Tập 174 - Trang 107441 - 2022
Gang Wang1, Yiwei Ma2, Wei Chen1
1School of Energy, Soochow University, Suzhou, 215006, China
2Troops 63921 of the Chinese People's Liberation Army, Beijing, 100094, China

Tài liệu tham khảo

Anzini, 2019, Thermal forces from a microscopic perspective, Phys. Rev. Lett., 123, 10.1103/PhysRevLett.123.028002 Hottovy, 2012, Thermophoresis of Brownian particles driven by coloured noise, EPL (Europhys. Lett.), 99, 60002, 10.1209/0295-5075/99/60002 Barragan, 2017, Thermo-osmosis in membrane systems: a review, J. Non-Equilibrium Thermodyn., 42, 217, 10.1515/jnet-2016-0088 Denbigh, 1952, The thermo-osmosis of gases through a membrane. II. Experimental, Proc. Roy. Soc. Lond. Math. Phys. Sci., 210, 518 Hoang, 2019, Elemental and isotopic fractionation of noble gases in gas and oil under reservoir conditions: impact of thermodiffusion, Eur. Phys. J. E, 42, 10.1140/epje/i2019-11823-x Javadpour, 2007, Nanoscale gas flow in shale gas sediments, J. Can. Petrol. Technol., 46, 10.2118/07-10-06 Chen, 2017, Experimental study of high temperature combustion for enhanced shale gas recovery, Energy Fuels, 31, 10003, 10.1021/acs.energyfuels.7b00762 Chen, 2019, Flow transportation inside shale rocks at low-temperature combustion condition: a simple scaling law, Combust. Flame, 199, 114, 10.1016/j.combustflame.2018.10.022 Wang, 2014, Conceptual study of thermal stimulation in shale gas formations, J. Nat. Gas Sci. Eng., 21, 874, 10.1016/j.jngse.2014.10.015 Qu, 2015, Characteristics of stable carbon isotopic composition of shale gas, Natl. Gas Geosci., 26, 1376 Dauphas, 2016, Mass fractionation laws, mass-independent effects, and isotopic anomalies, Annu. Rev. Earth Planet Sci., 44, 10.1146/annurev-earth-060115-012157 Gao, 2017, The gas isotope interpretation tool: a novel method to better predict production decline, AAPG (Am. Assoc. Pet. Geol.) Bull., 101, 1263 Li, 2017, Chemical and isotopic fractionation of shale gas during adsorption and desorption, J. Nanosci. Nanotechnol., 17, 6395, 10.1166/jnn.2017.14438 Bacsik, 2002, Solubility isotope effects in aqueous solutions of methane, J. Chem. Phys., 116, 10816, 10.1063/1.1480012 Zhang, 2001, Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure, Geochem. Cosmochim. Acta, 65, 2723, 10.1016/S0016-7037(01)00601-9 Goel, 2012, Isotope fractionation by diffusion in silicate melts: insights from molecular dynamics simulations, Geochem. Cosmochim. Acta, 93, 205, 10.1016/j.gca.2012.07.008 Gonçalvès, 2018, Analytical expressions for thermo-osmotic permeability of clays, Geophys. Res. Lett., 45, 691, 10.1002/2017GL075904 Gallis, 2002, Calculations of the near-wall thermophoretic force in rarefied gas flow, Phys. Fluids, 14, 4290, 10.1063/1.1518692 Ganti, 2017, Molecular simulation of thermo-osmotic slip, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.038002 Gogoi, 2021, Electro-osmotic flow through nanochannel with different surface charge configurations: a molecular dynamics simulation study, Phys. Fluids, 33, 10.1063/5.0062031 Marbach, 2019, Osmosis, from molecular insights to large-scale applications, Chem. Soc. Rev., 48, 3102, 10.1039/C8CS00420J Gogoi, 2020, Dehydration of acetic acid using layered graphene oxide (GO) membrane through forward osmosis (FO) process: a molecular dynamics study, Mol. Simulat., 46, 1500, 10.1080/08927022.2020.1849684 Gogoi, 2018, Multilayer graphene oxide membrane in forward osmosis: molecular insights, ACS Appl. Nano Mater., 1, 4450, 10.1021/acsanm.8b00709 Gogoi, 2020, Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes, Nanoscale, 12, 7273, 10.1039/C9NR09288A Denbigh, 1952, The thermo-osmosis of gases through a membrane I. Theoretical, Proc. Roy. Soc. Lond. Math. Phys. Sci., 210, 377 Gonçalvès, 2010, Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights, J. Colloid Interface Sci., 342, 166, 10.1016/j.jcis.2009.09.056 Monsivais, 2018, Conjugate thermal creep flow in a thin microchannel, Int. J. Therm. Sci., 124, 227, 10.1016/j.ijthermalsci.2017.10.012 Putnam, 2007, Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles, Langmuir, 23, 9221, 10.1021/la700489e Reith, 1999, On the nature of thermal diffusion in binary Lennard-Jones liquids, J. Chem. Phys., 112 Ash, 1982, Thermo-osmosis of sorbable gases in porous media: Part I: theoretical basis of two methods of mixture separation, J. Membr. Sci., 10, 183, 10.1016/S0376-7388(00)81409-X Ash, 1997, Thermo-osmosis of sorbable gases in porous media. Part IV. Mixture separation by two procedures, J. Membr. Sci., 125, 41, 10.1016/S0376-7388(96)00109-3 Richter, 2008, Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion, Geochem. Cosmochim. Acta, 72, 206, 10.1016/j.gca.2007.10.016 Lacks, 2012, Isotope fractionation by thermal diffusion in silicate melts, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.065901 Derjaguin, 1941, Thermal osmosis at ordinary temperatures, Dokl. Akad. Nauk SSSR, 32, 622 Han, 2005, Thermophoresis in liquids: a molecular dynamics simulation study, J. Colloid Interface Sci., 284, 339, 10.1016/j.jcis.2004.09.067 Anderson, 1989, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., 21, 61, 10.1146/annurev.fl.21.010189.000425 Derjaguin, 1987, 369 Churaev, 2000 Bregulla, 2016, Thermo-osmotic flow in thin films, Phys. Rev. Lett., 116, 188303, 10.1103/PhysRevLett.116.188303 Fu, 2018, Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: thermodynamics meets hydrodynamics, J. Phys. Chem. Lett., 9, 2086, 10.1021/acs.jpclett.8b00703 Fu, 2017, What controls thermo-osmosis? Molecular simulations show the critical role of interfacial hydrodynamics, Phys. Rev. Lett., 119, 214501, 10.1103/PhysRevLett.119.214501 Turner, 1989, Irreversible thermodynamics—theory and applications, Chem. Eng. Sci., 44, 1747, 10.1016/0009-2509(89)80017-X Denbigh, 1952, The thermo-osmosis of gases through a membrane. I. Theoretical, Proc. Math. Phys. Eng. Sci., 210, 377 Ganti, 2018, Hamiltonian transformation to compute thermo-osmotic forces, Phys. Rev. Lett., 121, 10.1103/PhysRevLett.121.068002 Chen, 2021, Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect, Nanoscale, 13, 1696, 10.1039/D0NR06687G Xia, 2012, Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption, Geochem. Cosmochim. Acta, 77, 489, 10.1016/j.gca.2011.10.014 Zhang, 2020, Gas transport characteristics in shale matrix based on multiple mechanisms, Chem. Eng. J., 386, 124002, 10.1016/j.cej.2019.124002 Zhang, 2019, Review of micro seepage mechanisms in shale gas reservoirs, Int. J. Heat Mass Tran., 139, 144, 10.1016/j.ijheatmasstransfer.2018.09.106 Wu, 2015 Sun, 2020, Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition: pore size and kerogen types, Chem. Eng. J., 398, 124341, 10.1016/j.cej.2020.124341 Li, 2019, Pressure-dependent equilibrium molecular simulation of shale gas and its distribution and motion characteristics in organic-rich nano-slit, Fuel, 237, 1040, 10.1016/j.fuel.2018.10.050 Nan, 2020, Slip length of methane flow under shale reservoir conditions: effect of pore size and pressure, Fuel, 259, 116237, 10.1016/j.fuel.2019.116237 Lin, 2017, Using graphene to simplify the adsorption of methane on shale in MD simulations, Comput. Mater. Sci., 133, 99, 10.1016/j.commatsci.2017.03.010 Martin, 1998, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B, 102, 2569, 10.1021/jp972543+ Frenkel, 2001 Ambrose, 2010, New pore-scale considerations for shale gas in place calculations Zhang, 2014, Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal, Fuel, 122, 186, 10.1016/j.fuel.2014.01.006 Peng, 1976, New two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 10.1021/i160057a011 Wang, 2019, Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: a grand canonical Monte Carlo simulation study, Chem. Eng. J., 355, 76, 10.1016/j.cej.2018.08.067 Kazemi, 2016, Non-equilibrium molecular dynamics simulation of gas flow in organic nanochannels, J. Nat. Gas Sci. Eng., 33, 1087, 10.1016/j.jngse.2016.05.068 Swope, 1982, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys., 76, 637, 10.1063/1.442716 Linstrom, 2001, The NIST chemistry WebBook:A chemical data resource on the internet, J. Chem. Eng. Data, 46, 1059, 10.1021/je000236i Bourg, 2010, Isotopic mass dependence of metal cation diffusion coefficients in liquid water, Geochem. Cosmochim. Acta, 74, 2249, 10.1016/j.gca.2010.01.024 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Karniadakis, 2006 Sahebi, 2019, A molecular dynamics study about the mechanisms of liquid thermal transpiration flow in nanotubes, Int. J. Therm. Sci., 136, 9, 10.1016/j.ijthermalsci.2018.10.011 Sobecki, 2019, Phase behavior of hydrocarbons in nano-pores, Fluid Phase Equil., 497, 104, 10.1016/j.fluid.2019.05.025 Wang, 2020, Knudsen pumps: a review, Microsyst. Nanoeng., 6, 26, 10.1038/s41378-020-0135-5 Cao, 2019, A new gas-content-evaluation method for organic-rich shale using the fractionation of carbon isotopes of methane, SPE J., 24, 2574, 10.2118/197043-PA Tian, 2018, An analytical model for shale gas transport in circular tube pores, Int. J. Heat Mass Tran., 127, 321, 10.1016/j.ijheatmasstransfer.2018.07.046 Wu, 2015, Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs, Ind. Eng. Chem. Res., 54, 3225, 10.1021/ie504030v Veltzke, 2012, An analytically predictive model for moderately rarefied gas flow, J. Fluid Mech., 698, 406, 10.1017/jfm.2012.98 Chen, 2019, Non-linear gas transport inside an ultra-tight Longmaxi shale core under thermal stimulation conditions, Energy, 186, 10.1016/j.energy.2019.07.176 Mook, 2000, Environmental isotopes in the hydrological cycle, introduction – theory, Methods Rev. Principl. Appl., 1 Ye, 2006, Theoretical investigation of gas separation inside a microchannel by thermal diffusion, Eng. Anal. Bound. Elem., 30, 1006, 10.1016/j.enganabound.2006.03.015 Farago, 2019, A simple statistical-mechanical interpretation of Onsager reciprocal relations and Derjaguin theory of thermo-osmosis, Eur. Phys. J. E, 42, 10.1140/epje/i2019-11898-3 Zhang, 2020, Molecular dynamics simulations about isotope fractionation of methane in shale nanopores, Fuel, 278, 118378, 10.1016/j.fuel.2020.118378 Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng., 18