Molecular interactions between PAMAM dendrimer and some medicines that suppress the growth of hepatitis virus (Adefovir, Entecavir, Telbivudine, Lamivudine, Tenofovir): a theoretical study
Tóm tắt
Viral hepatitis is a common viral infection, can be dangerous, involves the body and leads to inflammation and destruction of tissue and normal function of the liver. Viral hepatitis is a major cause of premature death in human beings. According to the World Health Organization, it was assumed that there are more than 385 and 170 million carriers of hepatitis B and C in the world, respectively, and more than a million deaths occur due to hepatitis each year. There are a few specific drugs to treat hepatitis. To overcome some of these problems, nanoparticle systems containing organic and inorganic compounds are used for pharmaceutical purpose. One of these nanostructures is dendrimer. Dendrimers are repetitively branched nanomolecules. In this study, a theoretical study of the structural probabilities of nanostructure complex formation between polyamidoamine dendrimers (PAMAM) and some drugs that suppress the growth of hepatitis virus (Adefovir, Entecavir, Telbivudine, Lamivudine, Tenofovir: 1–5) has been carried out. The possibility of drug release, drug delivery and drug separation by PAMAM has been investigated. MMFF94 method has been used to provide results and medical solutions. In all the drug–PAMAM complexes, the relative energy levels of the complex energy have been calculated by the RHF/PM6 method. Medicine delivery, release process of drugs and separation of drugs from the in vivo and in vitro real sample were the main enforceable results obtained from this theoretical study of medicines 1–5 & PAMAM. This model has predicted an imaginary method to separate the medicines from real samples and study the drug release process of the discussed complexes. The imaginary separation procedure that suppresses the growth of hepatitis virus–1–5 medicine mixture in in vitro samples is discussed. It is possible to collect compounds 1 and 2 by PAMAM and separate Adefovir, Telbivudine and Tenofovir (3–5) from the mixture of the sample of medicines 1–5.
Tài liệu tham khảo
Medina, S.H., El–Sayed M.E.H.: Nanobiotechnology: inorganic nanoparticles vs organic nanoparticles. Chem. Rev. 109, 3141 (2009)
Klajnert, B., Bryszewska, M.: Dendrimers: properties and applications. Bio Chimica Polonica. 48, 199 (2001)
Nanjwade, B.K., Bechra, H.M., Derkar, G.K., Manvi, F.V., Nanjwade, V.K.: Dendrimers:emergaing.polymers for drug-delivery system. Deliv. Syst. Eur. J. Pharm. Sci. 38, 185 (2009)
Dutta, T.J.: Multifunctional nanomaterials for multifaceted applications in biomedical arena. Biophysica Acta. 1770, 681 (2007)
Morgan, M.T., Nakanishi, Y., Kroll, D.J., Griset, A.P., Carnahan, M.A., Wathier, M., Oberlies, N.H., Manikumar, G., Wani, M.C., Grinstaff, M.W.: Cancer Research. 66, 11913 (2006)
Tekade, R.K., Dutta, T., Gajbhiye, V., Jain, N.K.: Exploring denrimer towards dual drug delivery: PH resporsive simultaneous drug-release kinetics. J Microencapsul. 26, 287 (2009)
Dutta, T., Garg, M.J., Jain, N.K.: Targeting of efavirenz loaded tuftsin conjugated poly (propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci. 34, 181 (2008)
Dutta, T., Agashe, H., Garg, B., Minakshi, B., Balasubramanium, P., Madhulika, K., Jain, N.K.: Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target. 15, 84 (2007)
Cheng, C.Y., Wu, Q., Li, Y., Xu, T.: External electrostatic interaction versus internal encapsulation between cationic dendrimers and negatively charged drugs: which contributes more to solubility enhancement of the duges? J. Phys. Chem. 112, 8884 (2008)
European Association For The Study Of The Liver EASL Clinical Practice Guidelines: management of chronic hepatitis B.; EASL Clinical Practice Guidelines: management of chronic hepatitis B; J. Hepatol. 50, 227 (2009)
Lewars, E.G.; Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Springer (2011)
Connor, J.: Meldola medal lecture molecular collisions and the semiclassical approximation. Chem. Soc. Rev. 5(12), 5 (1976)
Fincham, D., Heyes, D., Evans, M.: Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer. Chem. Phys. 63, 23 (1985)
Berendsen, H.J., Tieleman, D.P.: A practical guide for applying technigues to real word problems. Comput. Chem. 31, 639 (1998)
Whitnell, R.M., Wilson, K.R.: Computational molecular dynamics of chemical reactions in solution. Comput. Chem. 4, 67 (1993)
Grant, G.H., Richards, W.G.: Computational Chemistry. Oxford University Press (1995)
Schlegel, H.B.: Ab initio molecular dynamics with born-oppenheimer and extended Lagrangian methods using atom centered basis functions. Bull. Korean Chem. Soc. 24, 837 (2003)
Chang, R.: Physical Chemistry for the Biosciences. University Science Books. Cop, Sausalito (2005)
Senn, H.M., Thiel, W.: QM/MM methods for biological systems; In: Reiher, M. (ed.) Atomistic Approaches in Modern Biology, pp. 173–290. Springer (2007)
Tongraar, A., Sagarik, K., Rode, B.M.: Effects of many-body interactions on the preferentioal solvation of Mg2+ in aqueous ammonia solution: a born-oppenheimer Ab Initio QM/MM dynamics study. J. Phys. Chem. B. 105, 10559 (2001)
Polymeropoulos, E.E.: A. Warshel: Computer Modeling of Chemical Reactions in Enzymes and Solutions. Wiley, New York (1991)
Ingrosso, F., Mennucci, B., Tomasi, J.: Quantum mechanical calculations coupled with dynamical continuum model for the description of dielectric relaxation: Time dependent Stokes shift of coumarin C153 in polar solvents. J. Mol. Liq. 108, 21 (2003)
Lewars, E.G.: Computational chemistry. Springer, Dordrecht (2011)
Allinger, N.: Advances in physical organic chemistry, calculation of molecular structure and energy by force-field. Methods 13, 1–82 (1976)
Gao, J.: Methods and applications of combined quantum mechanical and molecular mechanical potentials. In: Lip-kowitz, K.B., Boyd, D.B. (eds.). Reviews in Computational Chemistry, vol. 7. VCH, New York (1996)
Jardillier, N., Goursot, A.: One-electron quantum capping potential for hybrid QM/MM studies of silicate molecules and solids. Chem. Phys. Lett. 454, 65 (2008)
Young, D.: Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. Wiley, Hoboken, New Jersey (2004)
Vacek, G., Perry, J.K., Langlois, J.M.: Advanced initial-guess algorithm for self-consistent-field calculations onorganometallic systems. Chem. Phys. Lett. 310, 189 (1999)
Holder, A.J.: Encyclopedia of Computational Chemistry, vol. 1. Wiley, Chichester (1998)
Dewar, M.J.: The absolute potential of the standard hydrogen electrode: a new estimate. J. Phys. Chem. 89, 2145 (1985)
Thiel, W.: Advances in chemical physics: new methods in computational quantum mechanics, In: Prigogine, I., Rice, S.A. (eds.). Perspectives on semiempirical molecular orbital theory, vol. 93, p. 703. Wiley, Hoboken, New Jersey (1996)
Thiel, W.: Semiempirical methods: current status and perspectives. Tetrahedron. 44, 7393 (1986)
Zerner, M.C.: Reviews in Computational Chemistry; Lipkowitz, K.B. Boyd, D.B. (eds.) VCH: New York, Weinheim, 1991. Chapter 2, p. 313
Khavryuchenko, V.D., Khavryuchenko, O.V., Lisnyak, V.V.: High multiplicity states in disordered carbon systems: Ab initio and semiempirical study. Chem. Phys. 368, 83 (2010)
All calculations were performed by: Spatran’10-Quantum Mechanics Program: (PC/x86) 1.1.0v4. Wavefunction Inc., USA (2011)
Targema, M., Obi- Egbedi, N.O., Adeoye, M.D.: Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Comput. Theor Chem. 1012, 47 (2013)
Shaji, S., Eappen, S.M., Rasheed, T.M.A., Nair, K.P.R.: NIR vibrational overtone spectra of N-methylaniline and N, N-dimethylaniline and N, N-diethylaniline: a conformational structural analysis using local mode model. Spectrochem. Acta A Mol. Biomol. Spectrosc. 60, 351 (2004)
Islam, M.M., Bhiuyan, M.D.H., Bredow, T., Try, A.C.: Theoretical investigation of the nonlinear optical properties of substituted anilines and N, N-Dimethylanilines. Comput Theor. Chem. 967, 165 (2011)
Kosar, B., Albayrak, C., Ersanli, C.C., Odabasoglu, M., Buyukgungor, O.: Molecular structure, spectroscopic investigations, second-order nonlinear optical properties and intramolecular proton transfer of (E)-5-(diethylamino)-2-[(4-propylphenylimino)methyl]phenol). Spectrochem. Acta A Mol. Biomol. Spectrosc. 93, 1–9 (2012)
Praveen, P.L., Ojha, D.P.: Substituent and solvent effects on UV-visible absorption spectra of liquid crystalline disubstituted biphenylcyclohexane derivatives–a computational approach. Cryst. Res. Technol. 47, 91 (2012)
Anbarasan, P.M., Kumar, P.S., Geetha, M., Govindan, R., Manimegalai, S., Velmurugan, K.: Molecular Struture and Solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Rec. Res. Sci. Tech. 2, 8 (2010)
Atkins, P., Paula, J.: Physical chemistry, 8th edn. Oxford University Press, New York (2006)
Mortime, R.G.: Physical chemistry, 3rd edn. Elsevier. Inc., USA (2008)
Parimala, K., Balachandran, V.: Vibrational spectroscopic (FTIR and FT Raman) studies, first order hyperpolarizabilities and HOMO, LUMO analysis of p-toluenesulfonyl isocyanate using ab-initio HF and DFT methods. Spectrochim Acta. A. Mol Biomol. Spectros. 81, 711 (2011)
Kim, S.R., Yang, J., Kudo, M., Hino, O.: Recent advances in the management of chronic hepatitis B. Hepat. Mon. 11, 601 (2011)
Mulliken, R.S.: Atomic Dipole moment corrected Hirshfeld population method. J. Chem. Phys. 1955, 23 (1833)
Leach, A.R.: Molecular modeling: principle and applications, 2nd edn. Pearson Publisher, New York (2001)
Schlik, T.: Molecular modeling and simulation: an interdisciplinary guide, 2nd edn. Springer Science+Business Media, LLC (2013)
Ohlinger, W.S., Philip, K.E., Bernard, J.D., Warren, J.H.: Efficient calculation of heats of formation. J. Phys. Chem. A. 113, 2165 (2009)
Bickelhaupt, F.M., van Eikema Hommes, N.J.R., Fonseca Guerra, C., Baerends, E.J.: The Carbon−Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4). Organometallics. 15, 2923 (1996)
Bundy, J.G., Morriss, A.W.J., Durham, D.G., Chemosphere, G.I.: Development of QSARs to invcstigate the bacterial toxicity and biotrans formation potential of aromatic heterocyclic compounds. Chemosphere. 42, 885 (2001)
Hansch, C.: Comparative QSAR: understanding hydrophobic interactions, classical and three-dimensional QSAR in agrochemistry, pp. 254–262. ACS, Washington DC (1995)
Yalkowsky, S.H., Li, A.: Predicting cosolvency. 1. Solubility ratio and solute log K ow. Ind. Eng. Chem. Res. 37, 4470 (1998)
Colonno, R.J., Rose, R.E., Pokornowski, K., Baldick, C.J., Yu, Eggers B.D.: Four year assessment of ETV resistance in nucleoside-naive and lamivudine refractory patients. J. Hepatol. 46, 294 (2007)
Sylvestre, D.L., Clements, B.J.: Adherence to hepatitis C treatment in recovering herion users maintained on methadone. Eur. J. Gastroent. Hepato. 19, 741 (2007)
Mauss, S., Berg, S., Rockstroh, J., Sarrazin, C.: New Hepatology Textbook, 7th edn. Medizin, Germany (2016)