Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology

Saeid Charsouei1, M. Reza Jabalameli2, Amin Karimi-Moghadam3
1Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran.
2Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
3Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3):464–474

Banerjee PN, Filippi D, Hauser WA (2009) The descriptive epidemiology of epilepsy—a review. Epilepsy Res 85(1):31–45

Fritschy JM (2008) Epilepsy, E/I balance and GABAA receptor plasticity. Front Mol Neurosci 1:5

Koch U, Magnusson AK (2009) Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol 19(3):305–310

Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

Ahmadian G, Ju W, Liu L et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23(5):1040–1050

Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321):2042–2045

Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(suppl 1):S21–S38

Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17(1):31–108

Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713

Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283

Sommer B, Keinanen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585

Mosbacher J, Schöpfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266(5187):1059–1062

Greger IH, Watson JF, Cull-Candy SG (2017) Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730

Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62

Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53(9):41–58

Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mol Neurobiol 45(1):61–75

Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031

Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J (2002) Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 15(1):51–62

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

Morris RG, Moser E, Riedel G et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc B 358(1432):773–786

Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22(3):496–508

Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). CSH Perspect Biol 4(6):a005710

Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg 2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

Asrar S, Zhou Z, Ren W, Jia Z (2009) Ca2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS ONE 4(2):e4339

Fleming JJ, England PM (2010) AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol 6(2):89–97

Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317

Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

Klann E (2002) Metaplastic protein phosphatases. Learn Memory 9(4):153–155

Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11

Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30(17):3540–3552

Haering S, Tapken D, Pahl S, Hollmann M (2014) Auxiliary subunits: shepherding AMPA receptors to the plasma membrane. Membranes 4(3):469–490

Henley JM, Barker EA, Glebov OO (2011) Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci 34(5):258–268

Kapitein LC, Schlager MA, Kuijpers M et al (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20(4):290–299

Perestenko PV, Henley JM (2003) Characterization of the intracellular transport of GluR1 and GluR2 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 278(44):43525–43532

Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267

Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105(3):331–343

Williams SL (2017) AMPA receptors in the development and treatment of epilepsy. UCL (University College London).

Lin DT, Makino Y, Sharma K et al (2009) Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat Neurosci 12(7):879–887

Yang Y, Xb W, Frerking M, Zhou Q (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105(32):11388–11393

Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64(3):381–390

Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85(4):787–803

Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22(3):461–469

Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M (2005) NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28(4):650–660

Connor SA, Wang YT (2016) A place at the table: LTD as a mediator of memory genesis. Neurosci 22(4):359–371

Migues PV, Liu L, Archbold GE et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36(12):3481–3494

Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473

Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15(1):11–27

Glebov OO, Tigaret CM, Mellor JR, Henley JM (2015) Clathrin-independent trafficking of AMPA receptors. J Neurosci 35(12):4830–4836

Hanley JG, Henley JM (2005) PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO J 24(18):3266–3278

Daw MI, Chittajallu R, Bortolotto ZA et al (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28(3):873–886

Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 107(44):19038–19043

Hanley JG (2007) NSF binds calcium to regulate its interaction with AMPA receptor subunit GluR2. J Neurochem 101(6):1644–1650

Hanley JG, Khatri L, Hanson PI, Ziff EB (2002) NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34(1):53–67

Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36(4):661–674

Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21(15):5417–5428

Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23(27):9220–9228

Zhang J, Wang Y, Chi Z et al (2011) The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell 145(2):284–299

Fiuza M, Rostosky CM, Parkinson GT et al (2017) PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 216(10):3323–3338

Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. Front Cell Neurosci 12:362

Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5(8):888–894

Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA A conductance in hippocampal interneurons. Nat Commun 2:376

Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE (2018) Structure of a human synaptic GABA A receptor. Nature 559(7712):67–72

Machu TK, Firestone JA, Browning MD (1993) Ca2+/calmodulin-dependent protein kinase II and protein kinase C phosphorylate a synthetic peptide corresponding to a sequence that is specific for the γ2L subunit of the GABAA receptor. J Neurochem 61(1):375–377

Mcdonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABAA receptorβ2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10):1377–1385

Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J Neurosci 27(52):14326–14337

Petrini EM, Ravasenga T, Hausrat TJ et al (2014) Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP. Nat Commun 5:3921

Abramian AM, Comenencia-Ortiz E, Vithlani M et al (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285(53):41795–41805

Bright DP, Smart TG (2013) Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 38(10):3408–3423

Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70(3):385–409

Petrini EM, Barberis A (2014) Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 8:300

Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor–mediated excitotoxicity in humans. Ann Neurol 37(1):123–126

Coombs ID, Soto D, Zonouzi M et al (2012) Cornichons modify channel properties of recombinant and glial AMPA receptors. J Neurosci 32(29):9796–9804

Peng PL, Zhong X, Tu W et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49(5):719–733

Wen W, Lin CY, Niu L (2017) R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 7(1):13654

Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB Jr (2010) Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil 115(6):461–472

Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14(12):1517–1524

La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2012) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631

Pigeat R, Chausson P, Dreyfus FM, Leresche N, Lambert RC (2015) Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 35(1):64–73

Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15879–15893

Terunuma M, Jang IS, Ha SH et al (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 24(32):7074–7084

Hirano T, Kawaguchi SY (2014) Regulation and functional roles of rebound potentiation at cerebellar stellate cell—Purkinje cell synapses. Front Cell Neurosci 8:42

Kanematsu T, Mizokami A, Watanabe K, Hirata M (2007) Regulation of GABAA-receptor surface expression with special reference to the involvement of GABARAP (GABAA receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104(4):285–292

Tretter V, Moss SJ (2008) GABAAreceptor dynamics and constructing GABAergic synapses. Front Mol Neurosci 1:7

Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59(1):43–50

Kapur J (2018) Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open 3(Suppl 2):165–168

Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54(8):1498–1503

Rogawski MA (2011) Revisiting AMPA receptors as an antiepileptic drug target: revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 11(2):56–63

Patsalos PN (2015) The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56(1):12–27

Beretta S, Padovano G, Stabile A et al (2017) Efficacy and safety of perampanel oral loading in post-anoxic super-refractory status epilepticus: a case series. Epilepsia 58(Suppl 5):S5–S199

Redecker J, Wittstock M, Benecke R, Rösche J (2015) Efficacy of perampanel in refractory nonconvulsive status epilepticus and simple partial status epilepticus. Epilepsy Behav 45:176–179

Brigo F, Lattanzi S, Rohracher A et al (2018) Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsy Behav 86:179–186

Lange F, Weßlau K, Porath K et al (2019) AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS ONE 14(2):e0211644

Corsi L, Mescola A, Alessandrini A (2019) Glutamate receptors and glioblastoma multiforme: an old “route” for new perspectives. Int J Mol Sci 20(7):1796

Lattanzi S, Striano P (2019) The impact of perampanel and targeting AMPA transmission on anti-seizure drug discovery. Expert Opin Drug Discov 14(3):195–197

Izumoto S, Miyauchi M, Tasaki T et al (2018) Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res 38(7):4361–4366

Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38(6):1153–1178

Johnson KA, Conn PJ, Niswender CM (2009) Niswender, Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol Disord 8(6):475–491

Chase TN, Oh J, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(2):II36–II42

Lattanzi S, Grillo E, Brigo F, Silvestrini M (2018) Efficacy and safety of perampanel in Parkinson’s disease. A systematic review with meta-analysis. J Neurol 265(4):733–740

Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 127(197):9–18

Danielsson I, Su KG, Kauer L et al (2004) Talampanel and human cortical excitability: EEG and TMS. Epilepsia 45:120–121

Meldrum BS, Rogawski MA (2007) Molecular targets for antiepileptic drug development. Neurotherapeutics 4(1):18–61

Penn AC, Greger IH (2009) Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biol 6(5):517–521

Lykens NM, Coughlin DJ, Reddi JM, Lutz GJ, Tallent MK (2017) AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability. PLoS ONE 12(2):e0171538

Gan Q, Salussolia CL, Wollmuth LP (2015) Assembly of AMPA receptors: mechanisms and regulation. J Physiol 593(1):39–48

Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861

Bannai H, Niwa F, Sherwood MW et al (2015) Bidirectional control of synaptic GABAAR clustering by glutamate and calcium. Cell Rep 13(12):2768–2780