Molecular identification of two entomopathogenic fungus Clonostachys rosea strains and their efficacy against two aphid species in Iraq
Tóm tắt
The green peach aphid, Myzus persicae Sulzer, and the bean aphid, Aphis fabae Scopoli (both Hemiptera: Aphididae), are serious pests of greenhouse vegetable crops in Iraq and other regions of the globe. In this study, two morphological identical isolates (AA80 and AA82) of the entomopathogenic fungus Clonostachys rosea Schroers (Hypocreales: Bionectriaceae) from Iraq were isolated and characterized with phylogenetic analysis based on the internal transcribed spacer (ITS) region. The efficacy of C. rosea against M. persicae and A. fabae was previously unknown. In the laboratory bioassays, mortality of adult M. persicae and A. fabae caused by both C. rosea isolates varied according to conidial concentrations, with complete mortality occurring at 1 × 109 conidia ml−1 10 day post treatment. For M. persicae, LC50 values of AA80 and AA80 isolates were 3.6 × 106 and 3.8 × 106 conidia ml−1. For A. fabae, LC50 values of AA80 and AA80 isolates were 4.5 × 106 and 4.35 × 106 conidia ml−1. Infection by both fungal isolates at LC50 values reduced total fecundity of the treated aphids by 20% when compared to the untreated aphids. The results from laboratory bioassays showed that C. rosea has potential as a biological control agent of M. persicae and A. fabae which is crucial for ecofriendly biopesticide development. However, further field and greenhouse studies are required for mass production.
Tài liệu tham khảo
Blackman RL, Eastop VF (2007) Insecticide resistance. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, pp 1–22
Mohammed AA, Kadhim JH, Kamaluddin ZNA (2018) Selection of highly virulent entomopathogenic fungal isolates to control the greenhouse aphid species in Iraq. Egypt J Biol Pest Control 28:1–7. https://doi.org/10.1186/s41938-018-0079-3
Blackman RL, Eastop VF (2008) Aphids on the world’s herbaceous plants and shrubs. Wiley
Foster SP, Devine G, Devonshire AL (2007) Insecticide resistance. In: Van Emden HF, Harringto R (eds) Aphids as crop pests. CABI, Wallingford, pp 261–278
Ioannidis P (2000) Resistance of Aphis fabae and Myzus persicae to insecticides in sugar beets. In: Proceedings of the 63rd Congress of the International Institute for Beet Research, pp 497–504
Loureiro EDS, Moino A (2006) Patogenicidade de fungos hifomicetos aos pulgões Aphis gossypii glover Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotrop Entomol 35:660–665. https://doi.org/10.1590/S1519-566X2006000500014
Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biol Control 40:327–332. https://doi.org/10.1016/j.biocontrol.2006.12.002
Saruhan I (2018) Efficacy of some entomopathogenic fungi against Aphis fabae scopoli (Hemiptera: Aphididae). Egypt J Biol Pest Control 28:1–6. https://doi.org/10.1186/s41938-018-0096-2
Steinkraus D (2006) Factors affecting transmission of fungal pathogens of aphids. J Invertebr Pathol 92:125–131. https://doi.org/10.1016/j.jip.2006.03.009
Schroers HJ, Samuels GJ, Seifert KA, Gams W (1999) Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91:365–385. https://doi.org/10.1080/00275514.1999.12061028
Toledo A, Virla E, Humber R, Paradell S, Lastra CL (2006) First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimiagrossa (Hemiptera: Cicadellidae) in Argentina. J Invertebr Pathol 92:7–10. https://doi.org/10.1016/j.jip.2005.10.005
Zhang L, Yang J, Niu Q, Zhao X, Ye F, Liang L, Zhang KQ (2008) Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein. Appl Microbiol Biotechnol 78:983–990. https://doi.org/10.1007/s00253-008-1392-7
Anwar W, Ali S, Nawaz K, Iftikhar S, Javed MA, Hashem A, Alqarawi AA, Abd Allah EF, Akhter A (2018) Entomopathogenic fungus Clonostachys rosea as a biocontrol agent against whitefly (Bemisia tabaci). Biocontrol Sci Tech 28:750–760. https://doi.org/10.1080/09583157.2018.1487030
Blackman RL, Eastop VF (2000) Aphids on the world’s crop: an identification and information guide. Wiley
Schroers HJ (2001) A monograph of bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs
White TJ, Bruns T, Lee SJ, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, vol 18, pp 315–322
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389
Kearse M, Moir R, Wilson A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Mohammed AA, Hatcher PE (2016) Effect of temperature, relative humidity and aphid developmental stage on the efficacy of the mycoinsecticide Mycotal® against Myzus persicae. Biocontrol Sci Tech 26:1379–1400. https://doi.org/10.1080/09583157.2016.1207219
Faria MR, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001
Mohammed AA, Younus AS, Ali AN (2021) Efficacy of Clonostachys rosea, as a promising entomopathogenic fungus, against coleopteran stored product insect pests under laboratory conditions. Egypt J Biol Pest Control 31:1–6. https://doi.org/10.1186/s41938-021-00405-6
Bidochka MJ, Khachatourians GG (1990) Identification of Beauveria bassiana extracellular protease as virulence factor in pathogenicity towards the migratory grasshopper Melanoplus sanguinipes. J Invertebr Pathol 56:362–370. https://doi.org/10.1016/0022-2011(90)90123-N
Askary H, Carriere Y, Belanger R, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Sci Tech 8:23–32. https://doi.org/10.1080/09583159830405
Roditakis E, Couzin ID, Franks NR, Charnley AK (2008) Effects of Lecanicillium longisporum infection on the behaviour of the green peach aphid Myzus persicae. J Insect Physiol 54:128–136. https://doi.org/10.1016/j.jinsphys.2007.08.008
Wang Z, Knudsen G (1993) Effect of Beauveria bassiana (Fungi: Hyphomycetes) on fecundity of the Russian wheat aphid (Homoptera: Aphididae). Environ Entomol 22:874–878. https://doi.org/10.1093/ee/22.4.874
Kim JJ (2007) Influence of Lecanicillium attenuatum on the development and reproduction of the cotton aphid, Aphis gossypii. BioControl 52:789–799. https://doi.org/10.1007/s10526-006-9050-4
Shrestha G, Enkegaard A, Steenberg T (2015) Laboratory and semi-field evaluation of Beauveria bassiana (Ascomycota: Hypocreales) against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae). Biol Control 85:37–45. https://doi.org/10.1016/j.biocontrol.2015.03.005