Sự tiến hóa phân tử của thụ thể acetylcholine nicotinic: Một ví dụ về gia đình gen đa gen trong các tế bào có khả năng kích thích

Journal of Molecular Evolution - Tập 40 - Trang 155-172 - 1995
Nicolas Le Novere1, Jean-Pierre Changeux1
1Laboratoire de Neurobiologie Moléculaire, Paris, France

Tóm tắt

Một phân tích phát sinh chủng loại rộng rãi về gia đình gen của chuỗi con thụ thể acetylcholine nicotinic đã được thực hiện bằng các phương pháp khía cạnh và kiểu hình. Các phần bảo tồn của chuỗi axit amin đã được phân tích bằng phần mềm CLUSTAL V và PHYLIP. Cấu trúc của các gen cũng đã được xem xét. Kết quả cho thấy một sự sao chép gen đầu tiên có thể đã xảy ra trước sự xuất hiện của Bilateria. Sau đó ba tiểu họ xuất hiện: I-các chuỗi con α-bungarotoxin gắn bó với thần kinh (α7, α8); III-các chuỗi con nicotinic thần kinh (α2–α6, β2–β4), trong đó cũng bao gồm chuỗi con gắn acetylcholine cơ bắp (α1); và IV-các chuỗi con không α của cơ bắp (β1, γ, δ, ε). Các chuỗi con Insecta (tiểu họ II) có thể có nguồn gốc tương đồng với gia đình III và IV. Nhiều sự chuyển đổi biểu hiện mô từ thần kinh sang cơ và ngược lại có thể được suy luận từ việc biểu hiện hiện tại của các chuỗi con và các cây được tái cấu trúc. Sự đa dạng hóa của tiểu họ nicotinic thần kinh bắt đầu từ dòng tổ của động vật có dây sống, các lần sao chép cuối cùng xảy ra ngay trước khi bắt đầu dòng động vật có vú. Sự tiến hóa này song song với sự gia tăng độ phức tạp của các hệ thống cholinergic.

Từ khóa

#thụ thể acetylcholine nicotinic #phân tích phát sinh chủng loại #gen đa gen #tế bào có khả năng kích thích #hệ thống cholinergic

Tài liệu tham khảo

Anand R, Conroy WG, Schoepfer R, Whiting P, Lindstrom J (1991) Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 266: 11192–11198 Anand R, Peng X, Lindstrom J (1993) Homomeric and native alpha7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett 327:241–246 Benton MJ (1990) Phylogeny of the major tetrapod groups: morphological data and divergence dates. J Mol Evol 30:409–424 Bertrand D, Galzi JL, Devillers-Thiéry A, Bertrand D, Changeux JP (1993) Stratification of the channel domain in neurotransmitter receptors. Curr Opin Cell Biol 5:688–693 Boulter J, O'Shea-Greenfield A, Duvoisin R, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D, Heinemann Patrick J (1990) α3, α5, and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482 Breer H, Kleene R, Hinz G (1985) Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J Neurosci 5:3386–3392 Brehm P, Okamura Y, Mandel G (1991) Ion channel evolution. Semin Neurosci 3:355–367 Britto LRG, Keyser KT, Lindstrom JM, Karten HJ (1992) Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus). J Comp Neurol 317:325–340 Changeux JP, Kasai M, Lee CY (1970) The use of snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA 67:1241–1247 Changeux JP (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. Fidia Res Found Neurosci Award Lectures 4:21–168 Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]α-bungarotoxin. J Neurosci 5:1307–1315 Cockcroft VB, Osguthorpe DJ, Barnard EA, Friday AE, Lunt GG (1992) Ligand-gated channels. Homology and diversity. Mol Neurobiol 4:129–169 Conroy G, Vernallis AB, Berg DK (1992) The α5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9:679–691 Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal acetylcholine receptor. Nature 350:235–238 Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX. Neuron 5:847–856 Darlison MG, Hutton ML, Harvey RJ (1993) Molluscan ligand-gated ion-channel receptors. In: Pichon Y (ed) EXS 63, comparative molecular neurobiology. Birkhäuser, Basel, pp 48–64 Daubas P, Devillers-Thiéry A, Geoffroy B, Martinez S, Bessis A, Changeux JP (1990) Differential expression of the neuronal acetylcholine receptor α2 subunit gene during chick brain development. Neuron 5:49–60 Daubas P, Salmon AM, Zoli M, Geoffroy B, Devillers-Thiéry A, Bessis A, Médevielle F, Changeux JP (1993) Chicken neuronal acetylcholine receptor α2-subunit gene exhibits neuron-specific expression in the brain and spinal cord of transgenic mice. Proc Natl Acad Sci USA 90:2237–2241 Dayhoff MO (1979) Atlas of protein sequence and structure, vol 5, supplement 3, 1978. National Biomedical Research Foundation, Washington DC Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) β3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem 264:6268–6272 Devillers-Thiéry A, Galzi JL, Eiselé JL, Bertrand S, Bertrand D, Changeux JP (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Memb Biol 136:97–112 Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, MD Ekström P (1987) Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L). J Comp Neurol 256:494–515 Estabrook GF, Johnson CS Jr, McMorris FR (1976) A mathematical foundation for the analysis of character compatibility. Math Biosci 23:181–187 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 Felsenstein J (1993) PHYLIP (phylogeny inference package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360 Fitch WW (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416 Flemming IT, Tornoe C, Riina HA, Coadwell J, Lewis JA, Sattelle DB (1993) Acetylcholine receptor molecules of the nematode Caenorhabditis elegans. In: Pichon Y (ed) EXS 63, comparative molecular neurobiology. Birkhäuser, Basel, pp 65–80 Galzi JL, Devillers-Thiéry A, Hussy N, Bertrand S, Changeux JP, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505 Galzi JL, Changeux JP (1994) Ligand-gated ion channel as unconventional allosteric proteins. Curr Opin Struct Biol 4:554–565 Gerschenfeld HM (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev 53:1–119 Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83 Gundelfinger ED (1992) How complex is the nicotinic receptor system of insects? TINS 15:206–211 Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321:171–174 Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244 Hill JA, Zoli M, Bourgeois JP, Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: The β2 subunit. J Neurosci 13:1551–1568 Jonas P, Baumann A, Merz B, Gundelfinger ED (1990) Structure and developmental expression of the Dal gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster. FEBS Lett 269:264–268 Karlin A (1993) Structure of nicotinic acetylcholine receptors. Curr Opin Neurobiol 3:299–309 Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315 Lake JA (1990) Origin of the metazoa. Proc Natl Acad Sci USA 87: 763–766 Lee CY, Chang CC (1966) Modes of actions of purified toxins from elapid venoms on neuro-muscular transmission. Mem Inst Butantan Sao Paulo 33:555–572 Leech CA, Sattelle DB (1993) Acetylcholine receptor/channel of insects. In: Pichon Y (ed) EXS 63, Comparative molecular neurobiology. Birkhäuser, Basel, pp 81–97 Le Quesne WJ (1969) A method of selection of characters in numerical taxonomy. Syst Zool 18:201–205 Luetje CW, Patrick J (1991) Both α- and β-subunits contribute to the agonist sensitivity of the neuronal nicotinic acetylcholine receptor. J Neurosci 11:837–845 Marshall J, Buckingham SD, Shingai R, Lunt GG, Goosey MW, Darlison MG, Satelle DB, Barnard EA (1990) Sequence and functional expression of a single α subunit of an insect nicotinic receptor. EMBO J 9:4391–4398 Mulle C, Vidal C, Benoit P, Changeux JP (1991) Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenuloi-nterpeduncular system. J Neurosci 11:2588–2597 Ono JK, Salvaterra PM (1981) Snake alpha-toxin effects on cholinergic and noncholinergic responses of Aplysia californica neurons. J Neurosci 1:259–270 Revah F, Bertrand D, Galzi JL, Devillers-Thiéry A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849 Role LW (1992) Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr Opin Neurobiol 2:254–262 Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Anon Rev Neurosci 16:403–443 Sawruk E, Schloss P, Betz H, Schmitt B (1990) Heterogeneity of Drosophila nicotinic receptors: SAD, a novel developmentally regulated α-subunit. EMBO J 9:2671 Schloss P, Hermans-Borgmeyer I, Betz H, Gundelfinger ED (1988) Neuronal acetylcholine receptor in Drosophila: the ARD protein is a component of a high affinity α-bungarotoxin binding complex. EMBO J 7:2889–2894 Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5:35–48 Segerberg MA, Stretton AOW (1993) Actions of cholinergic drugs in the nematode Ascaris suum. Complex pharmacology of muscle and motorneurons. J Gen Physiol 101:271–296 Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco Vanfleteren JR, Van de Peer Y, Blaxter ML, Tweedie SAR, Trotman C, Lu L, Van Hauwaert ML, Moens L (1994) Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences. Mol Phylogen Evol 3:92–101 Vernallis AB, Conroy WG, Berg DK (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10:451–464 Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334 Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of α2, α3, α4 and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridation histochemical study in the rat. J Comp Neurol 284: 314–335 Wada E, McKinnon D, Heinemann S, Patrick J, Swanson LW (1990) The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (α5) in the rat central nervous system. Brain Res 526:45–53 Walker RJ, Colquhoun L, Holden-Dye L (1992) Pharmacological profiles of the GABA and acetylcholine receptors from the nematode, Ascaris suum. Acta Biol Hung 43:59–68 Whiting P, Schoepfer R, Lindstrom J, Priestley T (1991) Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblast. Mol Pharmacol 40:463–472 Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730 Zoli M, Le Novère N, Hill JA, Changeux JP (1995) Developmental regulation of nicotinic receptor subunit mRNAs in the rat central and peripheral nervous system. J Neurosci (in press)