Phân tích mạng sinh thái phân tử
Tóm tắt
Hiểu được sự tương tác giữa các loài khác nhau trong một cộng đồng và phản ứng của chúng với các thay đổi môi trường là một mục tiêu trung tâm trong sinh thái học. Tuy nhiên, việc xác định cấu trúc mạng lưới trong một cộng đồng vi sinh vật là rất thách thức do tính đa dạng cực kỳ cao và trạng thái chưa được nuôi cấy của chúng. Mặc dù sự tiến bộ gần đây của công nghệ metagenomic, chẳng hạn như giải trình tự quy mô lớn và mảng gen chức năng, cung cấp các công cụ cách mạng cho việc phân tích cấu trúc cộng đồng vi sinh vật, vẫn còn khó khăn trong việc xem xét các tương tác mạng trong một cộng đồng vi sinh vật dựa trên dữ liệu metagenomic quy mô lớn.
Trong bài báo này, chúng tôi mô tả một khung phương pháp toán học và tin sinh học mới để xây dựng các mạng lưới liên kết sinh thái được gọi là mạng sinh thái phân tử (MENs) thông qua các phương pháp dựa trên Lý thuyết Ma trận Ngẫu nhiên (RMT). So với các phương pháp xây dựng mạng lưới khác, phương pháp này có điểm nổi bật là mạng lưới được xác định tự động và có tính ổn định cao với nhiễu, do đó cung cấp giải pháp xuất sắc cho một số vấn đề chung liên quan đến dữ liệu metagenomic quy mô lớn. Chúng tôi đã áp dụng nó để xác định cấu trúc mạng của các cộng đồng vi sinh vật chịu tác động của việc làm nóng thí nghiệm lâu dài dựa trên dữ liệu giải trình tự pyrosequencing của các gen rRNA 16S. Chúng tôi cho thấy rằng các MEN được xây dựng dưới cả điều kiện ấm và không ấm đều biểu hiện các đặc điểm hình thái học nổi bật như tự do quy mô, thế giới nhỏ và tính mô-đun, tương thích với các mạng sinh thái phân tử đã được mô tả trước đó. Phân tích eigengene cho thấy các eigengene phản ánh tương đối tốt các hồ sơ mô-đun. Nhất quán với nhiều nghiên cứu khác, một số đặc điểm môi trường chính bao gồm nhiệt độ và pH của đất đã được tìm thấy là quan trọng trong việc xác định các tương tác mạng trong các cộng đồng vi sinh vật được kiểm tra. Để tạo điều kiện cho việc ứng dụng của nó trong cộng đồng khoa học, tất cả các phương pháp và công cụ thống kê này đã được tích hợp vào một quy trình phân tích mạng sinh thái phân tử toàn diện (MENAP), hiện đã có thể truy cập mở (
Phân tích mạng sinh thái phân tử dựa trên RMT cung cấp các công cụ mạnh mẽ để làm sáng tỏ các tương tác mạng trong các cộng đồng vi sinh vật và phản ứng của chúng với các thay đổi môi trường, điều này là rất quan trọng cho nghiên cứu trong lĩnh vực sinh thái vi sinh và vi sinh môi trường.
Từ khóa
Tài liệu tham khảo
Montoya JM, Pimm SL, Sole RV: Ecological networks and their fragility.Nature 2006, 442(7100):259–264. 10.1038/nature04927
May RM: Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey; 1973.
Dunne JA, Williams RJ, Martinez ND: Food-web structure and network theory: The role of connectance and size.Proc Natl Acad Sci USA 2002, 99(20):12917–12922. 10.1073/pnas.192407699
Montoya JM, Sole RV: Small world patterns in food webs.J Theor Biol 2002, 214(3):405–412. 10.1006/jtbi.2001.2460
Rezende EL, Lavabre JE, Guimaraes PR, Jordano P, Bascompte J: Non-random coextinctions in phylogenetically structured mutualistic networks.Nature 2007, 448(7156):925-U926. 10.1038/nature05956
Raes J, Bork P: Molecular eco-systems biology: towards an understanding of community function.Nat Rev Miobiol 2008, 6(9):693–699. 10.1038/nrmicro1935
Barabasi AL, Oltvai ZN: Network biology: Understanding the cell's functional organization.Nat Rev Genet 2004, 5(2):101-U115. 10.1038/nrg1272
Akutsu T, Miyano S, Kuhara S: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model.Pac Symp Biocomput 1999, : 17–28.
Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling.Science 2003, 301(5629):102–105. 10.1126/science.1081900
Liang S, Fuhrman S, Somogyi R: Reveal, a general reverse engineering algorithm for inference of genetic network architectures.Pac Symp Biocomput 1998, 3: 18–29.
Yeung MKS, Tegner J, Collins JJ: Reverse engineering gene networks using singular value decomposition and robust regression.Proc Natl Acad Sci USA 2002, 99(9):6163–6168. 10.1073/pnas.092576199
Friedman N, Linial M, Nachman I: Pe'er D: Using Bayesian networks to analyze expression data.Journal of Computational Biology 2000, 7(3–4):601–620.
Gerstung M, Baudis M, Moch H, Beerenwinkel N: Quantifying cancer progression with conjunctive Bayesian networks.Bioinformatics 2009, 25(21):2809–2815. 10.1093/bioinformatics/btp505
Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks.Proc Natl Acad Sci USA 2000, 97(22):12182–12186. 10.1073/pnas.220392197
Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, et al.: Variations in DNA elucidate molecular networks that cause disease.Nature 2008, 452(7186):429–435. 10.1038/nature06757
Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, et al.: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target.Proc Natl Acad Sci USA 2006, 103(46):17402–17407. 10.1073/pnas.0608396103
Oldham MC, Horvath S, Geschwind DH: Conservation and evolution of gene coexpression networks in human and chimpanzee brains.Proc Natl Acad Sci USA 2006, 103(47):17973–17978. 10.1073/pnas.0605938103
Schmitt WA: Raab RM, Stephanopoulos G: Elucidation of gene interaction networks through time-lagged correlation analysis of transiptional data.Genome Res 2004, 14(8):1654–1663. 10.1101/gr.2439804
Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis.Stat Appl Genet Mol Bio 2005, 4: 17.
Gardner TS, Faith JJ: Reverse-engineering transiption control networks.Phys Life Rev 2005, 2(1):65–88. 10.1016/j.plrev.2005.01.001
Luo F, Yang Y, Zhong J, Gao H, Khan L, Thompson DK, Zhou J: Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory.BMC Bioinformatics 2007, 8: 299. 10.1186/1471-2105-8-299
Luo F, Zhong JX, Yang YF, Scheuermann RH, Zhou JZ: Application of random matrix theory to biological networks.Phys Lett A 2006, 357(6):420–423. 10.1016/j.physleta.2006.04.076
Yang Y, Harris DP, Luo F, Xiong W, Joachimiak M, Wu L, Dehal P, Jacobsen J, Yang Z, Palumbo AV, et al.: Snapshot of iron response in Shewanella oneidensis by gene network reconstruction.BMC Genomics 2009, 10(1):131. 10.1186/1471-2164-10-131
Handelsman J, Tiedje JM, Alvarez-Cohen L, Ashburner M, Cann IKO, DeLong EF, Doolittle WF, Fraser-Liggett CM, Godzik A, Gordon JI, et al.: Committee on Metagenomics: Challenges and Functional Applications. In . National Academy of Sciences, Washington; 2007:1–158.
He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, et al.: GeoChip: a comprehensive mioarray for investigating biogeochemical, ecological and environmental processes.ISME J 2007, 1(1):67–77. 10.1038/ismej.2007.2
Zhou J, Deng Y, Luo F, He Z: Tu Q.Zhi X: Functional molecular ecological networks. mBio 2010, 1(4):e00169–00110.
Zhou J, Deng Y, Luo F, He Z, Yang Y: Phylogenetic molecular ecological network of soil miobial communities in response to elevated CO2.mBio 2011, 2(4):e00122–11.
Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DH: Compilation and network analyses of cambrian food webs.PLoS Biol 2008, 6(4):e102. 10.1371/journal.pbio.0060102
Dunne JA: The network structure of food webs. In: Ecological Networks: Linking Structure to Dynamics in Food Webs. Edited by M. P, Dunne JA.Oxford: Oxford University Press 2006, : 27–86.
Chaffron S, Rehrauer H, Pernthaler J, von Mering C: A global network of coexisting miobes from environmental and whole-genome sequence data.Genome Res 2010, 20(7):947–959. 10.1101/gr.104521.109
Guimera R, Sales-Pardo M, Amaral LA: Classes of complex networks defined by role-to-role connectivity profiles.Nat Phys 2007, 3(1):63–69. 10.1038/nphys489
Bonacich P: Power and Centrality - a Family of Measures.Am J Sociol 1987, 92(5):1170–1182. 10.1086/228631
Watts DJ, Strogatz SH: Collective dynamics of 'small-world' networks.Nature 1998, 393(6684):440–442. 10.1038/30918
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks.Science 2002, 297(5586):1551–1555. 10.1126/science.1073374
Costa LD, Rodrigues FA, Travieso G, Boas PRV: Characterization of complex networks: A survey of measurements.Adv Phys 2007, 56(1):167–242. 10.1080/00018730601170527
West DB: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, N.J.; 1996.
Latora V, Marchiori M: Efficient behavior of small-world networks.Phys Rev Lett 2001, 87(19):198701.
Wasserman S, Faust K: Social Network Analysis: Methods and applications. Cambridge Univerisity Press, Cambridge; 1994.
Krackhardt D: Graph Theoretical Dimensions of Informal Organizations. Lawrence Erlbaum and Associates, Hillsdale, NJ; 1994.
Amaral LA, Scala A, Barthelemy M, Stanley HE: Classes of small-world networks.Proc Natl Acad Sci USA 2000, 97(21):11149–11152.
Girvan M, Newman ME: Community structure in social and biological networks.Proc Natl Acad Sci USA 2002, 99(12):7821–7826. 10.1073/pnas.122653799
Newman MEJ: Modularity and community structure in networks.Proc Natl Acad Sci USA 2006, 103(23):8577–8582. 10.1073/pnas.0601602103
Luo F, Zhong J, Yang Y, Zhou J: Application of random matrix theory to mioarray data for discovering functional gene modules.Phys Rev E 2006, 73(3 Pt 1):031924.
Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y: Reproducibility and quantitation of amplicon sequencing-based detection.ISME J 2011, 5: 1303–1313. 10.1038/ismej.2011.11
He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, van Nostrand JD, Hobbie SE, Reich P, Zhou J: Metagenomic analysis reveals a marked divergence in the structure of belowground miobial communities at elevated CO2.Ecol Lett 2010, 13(5):564–575. 10.1111/j.1461-0248.2010.01453.x
Nacke H, Thurmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M, Daniel R: Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils.PLoS ONE 201, 6(2):e17000.
Luo YQ, Hui DF, Zhang DQ: Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis.Ecology 2006, 87(1):53–63. 10.1890/04-1724
Dethlefsen L, Huse S, Sogin ML, Relman DA: The Pervasive Effects of an Antibiotic on the Human Gut Miobiota, as Revealed by Deep 16 S rRNA Sequencing.PLoS Biol 2008, 6(11):2383–2400.
Alon U: Biological networks: The tinkerer as an engineer.Science 2003, 301(5641):1866–1867. 10.1126/science.1089072
Clauset A, Moore C, Newman ME: Hierarchical structure and the prediction of missing links in networks.Nature 2008, 453(7191):98–101. 10.1038/nature06830
Olesen JM, Bascompte J, Dupont YL, Jordano P: The modularity of pollination networks.Proc Natl Acad Sci USA 2007, 104(50):19891–19896. 10.1073/pnas.0706375104
Pons P, Latapy M: Computing communities in large networks using random walks.Computer and Information Sciences - Iscis 2005, Proceedings 2005, 3733: 284–293. 10.1007/11569596_31
Newman MEJ: Finding community structure in networks using the eigenvectors of matrices.Phys Rev E 2006, 74(3):036104.
Guimera R, Amaral LAN: Cartography of complex networks: modules and universal roles.J Stat Mech-Theory Exp 2005, 2005: P02001. 10.1088/1742-5468/2005/02/P02001
Guimera R, Amaral LAN: Functional cartography of complex metabolic networks.Nature 2005, 433(7028):895–900. 10.1038/nature03288
Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH: Functional organization of the transiptome in human brain.Nat Neurosci 2008, 11(11):1271–1282. 10.1038/nn.2207
Horvath S, Dong J: Geometric interpretation of gene coexpression network analysis.PLoS Comput Biol 2008, 4(8):e1000117. 10.1371/journal.pcbi.1000117
Langfelder P, Horvath S: Eigengene networks for studying the relationships between co-expression modules.BMC Syst Biol 2007, 1: 54. 10.1186/1752-0509-1-54
The igraph library [http://cneurocvs.rmki.kfki.hu/igraph/]
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics 2008, 9: 559. 10.1186/1471-2105-9-559
Clauset A, Newman ME, Moore C: Finding community structure in very large networks.Phys Rev E 2004, 70(6 Pt 2):066111.
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, eech M, Gross B, et al.: Integration of biological networks and gene expression data using Cytoscape.Nat Protoc 2007, 2(10):2366–2382. 10.1038/nprot.2007.324
Maslov S, Sneppen K: Specificity and stability in topology of protein networks.Science 2002, 296(5569):910–913. 10.1126/science.1065103
Bascompte J, Jordano P, Melian CJ, Olesen JM: The nested assembly of plant-animal mutualistic networks.Proc Natl Acad Sci USA 2003, 100(16):9383–9387. 10.1073/pnas.1633576100
Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J: The architecture of mutualistic networks minimizes competition and ineases biodiversity.Nature 2009, 458(7241):1018–1020. 10.1038/nature07950
Bascompte J, Jordano P: Plant-animal mutualistic networks: The architecture of biodiversity.Annu Rev Ecol Evol Syst 2007, 38: 567–593. 10.1146/annurev.ecolsys.38.091206.095818
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al.: Enterotypes of the human gut miobiome.Nature 2011, 473(7346):174–180. 10.1038/nature09944
Fuhrman JA: Miobial community structure and its functional implications.Nature 2009, 459(7244):193–199. 10.1038/nature08058
Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI: Diet Drives Convergence in Gut Miobiome Functions Aoss Mammalian Phylogeny and Within Humans.Science 2011, 332(6032):970–974. 10.1126/science.1198719
Bandyopadhyay JN, Jalan S: Universality in complex networks: Random matrix analysis.Phys Rev E 2007, 76(2):026109.
Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Stanley HE: Universal and nonuniversal properties of oss correlations in financial time series.Phys Rev Lett 1999, 83(7):1471–1474. 10.1103/PhysRevLett.83.1471
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al.: A human gut miobial gene catalogue established by metagenomic sequencing.Nature 2010, 464(7285):59–65. 10.1038/nature08821
Zhou X, Kao MC, Wong WH: Transitive functional annotation by shortest-path analysis of gene expression data.Proc Natl Acad Sci USA 2002, 99(20):12783–12788. 10.1073/pnas.192159399
May RM: Stability and complexity in model ecosystems, 1st Princeton landmarks in biology. Oxford: Princeton University Press, Princeton, N.J; 2001.
Thebault E, Fontaine C: Stability of ecological communities and the architecture of mutualistic and trophic networks.Science 2010, 329(5993):853–856. 10.1126/science.1188321
Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand JD, Deng Y, He Z, et al.: GeoChip-based analysis of metabolic diversity of miobial communities at the Juan de Fuca Ridge hydrothermal vent.Proc Natl Acad Sci USA 2009, 106(12):4840–4845. 10.1073/pnas.0810418106
Zhou J, Kang S, Schadt CW, Garten CT: Spatial scaling of functional gene diversity aoss various miobial taxa.Proc Natl Acad Sci USA 2008, 105(22):7768–7773. 10.1073/pnas.0709016105
Butte AJ, Kohane IS: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements.Pac Symp Biocomput 2000, 5: 418–429.
Carter DA: Comprehensive strategies to study neuronal function in transgenic animal models.Biol Psychiatry 2004, 55(8):785–788. 10.1016/j.biopsych.2003.07.005
Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks.BMC Genomics 2006, 7: 40. 10.1186/1471-2164-7-40
Mehta ML: Random Matrices, 2nd edition.Academic Press 1990.
Zhong JX, Geisel T: Level fluctuations in quantum systems with multifractal eigenstates.Phys Rev E 1999, 59(4):4071. 10.1103/PhysRevE.59.4071
Bohigas O, Giannoni MJ, Schmit C: Spectral Properties of the Laplacian and Random Matrix Theories.J Phys Lett-Paris 1984, 45(21):1015–1022.
Barabasi AL: Scale-free networks: a decade and beyond.Science 2009, 325(5939):412–413. 10.1126/science.1173299
Barabasi AL, Albert R: Emergence of scaling in random networks.Science 1999, 286(5439):509–512. 10.1126/science.286.5439.509
Muller-Linow M, Hilgetag CC, Hutt MT: Organization of excitable dynamics in hierarchical biological networks.PLoS Comput Biol 2008, 4(9):e1000190. 10.1371/journal.pcbi.1000190
Kirkpatrick S, Gelatt CD: Vecchi MP: Optimization by simulated annealing.Science 1983, 220(4598):671–680. 10.1126/science.220.4598.671
Newman ME: Fast algorithm for detecting community structure in networks.Phys Rev E 2004, 69(6 Pt 2):066133.
Olesen JM, Bascompte J, Dupont YL, Jordano P: The smallest of all worlds: pollination networks.J Theor Biol 2006, 240(2):270–276. 10.1016/j.jtbi.2005.09.014
Alter O, Brown PO, Botstein D: Singular value decomposition for genome-wide expression data processing and modeling.Proc Natl Acad Sci USA 2000, 97(18):10101–10106.
Mantel N: Detection of Disease Clustering and a Generalized Regression Approach.Cancer Research 1967, 27(2p):209.