Molecular dynamics study on mechanical behaviors of Ti/Ni nanolaminate with a pre-existing void

Nano Materials Science - Tập 4 - Trang 113-125 - 2022
Mengjia Su1, Qiong Deng1, Lanting Liu1, Lianyang Chen1, He He1, Yinggang Miao1
1Joint International Research Laboratory of Impact Dynamics and Its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

Tài liệu tham khảo

Abharana, 2019, Effect of argon-nitrogen mixed ambient Ni sputtering on the interface diffusion of Ni/Ti periodic multilayers and supermirrors, Vacuum, 169, 108864, 10.1016/j.vacuum.2019.108864 Chesnokov, 2017, Microstructure of periodic metallic magnetic multilayer systems, Thin Solid Films, 632, 79, 10.1016/j.tsf.2017.04.033 Gortinskaya, 2007, Electronic transport in the multilayers with very thin magnetic layers, Physica E Low Dimens. Syst. Nanostruct., 36, 12, 10.1016/j.physe.2006.07.013 Ramos, 2009, Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films — a comparative study, J. Alloys Compd., 484, 335, 10.1016/j.jallcom.2009.04.098 Adams, 2015, Reactive multilayers fabricated by vapor deposition: a critical review, Thin Solid Films, 576, 98, 10.1016/j.tsf.2014.09.042 Koehler, 1970, Attempt to design a strong solid, Phys. Rev. B, 2, 547, 10.1103/PhysRevB.2.547 Misra, 2001, Deformation behavior of nanostructured metallic multilayers, Adv. Eng. Mater., 3, 217, 10.1002/1527-2648(200104)3:4<217::AID-ADEM217>3.0.CO;2-5 Subedi, 2018, Strength of nanoscale metallic multilayers, Scripta Mater., 145, 132, 10.1016/j.scriptamat.2017.04.009 Zhou, 2018, Cracking and toughening mechanisms in nanoscale metallic multilayer film: a brief review, Appl. Sci., 8, 1821, 10.3390/app8101821 Wang, 2011, An overview of interface-dominated deformation mechanisms in metallic multilayers, Curr. Opin. Solid State Mater. Sci., 15, 20, 10.1016/j.cossms.2010.09.002 Wang, 2017, Strength and plasticity of nanolaminated materials, Mater. Res. Lett., 5, 1, 10.1080/21663831.2016.1225321 Talebi, 2014, A computational library for multiscale modeling of material failure, Comput. Mech., 53, 1047, 10.1007/s00466-013-0948-2 Budarapu, 2014, An adaptive multiscale method for quasi-static crack growth, Comput. Mech., 53, 1129, 10.1007/s00466-013-0952-6 Budarapu, 2014, Efficient coarse graining in multiscale modeling of fracture, Theor. Appl. Fract. Mech., 69, 126, 10.1016/j.tafmec.2013.12.004 Yang, 2007, Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void, Comput. Mater. Sci., 40, 51, 10.1016/j.commatsci.2006.10.022 Zhao, 2009, Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper, Comput. Mater. Sci., 46, 749, 10.1016/j.commatsci.2009.04.034 Lubarda, 2004, Void growth by dislocation emission, Acta Mater., 52, 1397, 10.1016/j.actamat.2003.11.022 Zhang, 2012, Blocking effect of twin boundaries on partial dislocation emission from void surfaces, Nanoscale Res. Lett., 7, 1 Shang, 2018, Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: a molecular dynamics simulation, Comput. Mater. Sci., 148, 200, 10.1016/j.commatsci.2018.02.046 Su, 2020, Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: molecular dynamics study, Chin. Phys. B, 29, 116201, 10.1088/1674-1056/aba2e5 Yang, 2016, Coupled annealing temperature and layer thickness effect on strengthening mechanisms of Ti/Ni multilayer thin films, J. Mech. Phys. Solid., 88, 72, 10.1016/j.jmps.2015.12.005 Shi, 2017, Size dependent strain rate sensitivity transition from positive to negative in Ti/Ni multilayers[J], Mater. Sci. Eng., A, 680, 210, 10.1016/j.msea.2016.10.096 Zhou, 2001, Atomic scale structure of sputtered metal multilayers, Acta Mater., 49, 4005, 10.1016/S1359-6454(01)00287-7 Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B, 69, 144113, 10.1103/PhysRevB.69.144113 Ko, 2015, Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition, Phys. Rev. B, 92, 134107, 10.1103/PhysRevB.92.134107 Kavousi, 2019, Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification, Model. Simulat. Mater. Sci. Eng., 28, 10.1088/1361-651X/ab580c Cheng, 2007, Misfit dislocation network in Cu/Ni multilayers and its behaviors during scratching, Thin Solid Films, 515, 3698, 10.1016/j.tsf.2006.10.001 Tian, 2017, Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers[J], Chin. Phys. B, 26, 126802, 10.1088/1674-1056/26/12/126802 Liu, 2019, Strain rate and temperature effects on tensile behavior of Ti/Al multilayered nanowire: a molecular dynamics study, Superlattice. Microst., 135, 106272, 10.1016/j.spmi.2019.106272 An, 2019, Influence of interface with mismatch dislocations on mechanical properties of Ti/Al nanolaminate, J. Appl. Phys., 125, 165307, 10.1063/1.5085455 Su, 2019, Molecular dynamics study of the tensile behaviors of Ti(0001)/Ni(111) multilayered nanowires, Comput. Mater. Sci., 158, 149, 10.1016/j.commatsci.2018.11.019 Cheung, 1991, Atomic-level stress in an inhomogeneous system, J. Appl. Phys., 70, 5688, 10.1063/1.350186 Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng., 18, 15012, 10.1088/0965-0393/18/1/015012 Faken D, 1994, Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci., 2, 279, 10.1016/0927-0256(94)90109-0 Stukowski, 2012, Automated identification and indexing of dislocations in crystal interfaces, Model. Simulat. Mater. Sci. Eng., 20, 10.1088/0965-0393/20/8/085007 Tang, 2010, Fatigue crack growth in magnesium single crystals under cyclic loading: molecular dynamics simulation, Comput. Mater. Sci., 48, 426, 10.1016/j.commatsci.2010.02.003 Song, 2019, Atomic simulation of interaction mechanism between basal/prismatic interface and amorphous/crystalline interface of dual-phase magnesium alloys, J. Non-Cryst. Solids, 521, 119550, 10.1016/j.jnoncrysol.2019.119550 An, 2020, Anisotropic plasticity of nanocrystalline Ti: a molecular dynamics simulation, Chin. Phys. B, 29, 10.1088/1674-1056/ab7188 Liu, 2014, Twinning-like lattice reorientation without a crystallographic twinning plane, Nat. Commun., 5, 1 He, 2020, Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals, Nat. Commun., 11, 1, 10.1038/s41467-020-16351-0 Warner, 2009, Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals, Acta Mater., 57, 4267, 10.1016/j.actamat.2009.05.024 Chen, 2020, Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys, Mater. Sci. Eng., A, 773, 138873, 10.1016/j.msea.2019.138873 Yuan, 2012, Layer thickness dependent tensile deformation mechanisms in sub-10 nm multilayer nanowires, J. Appl. Phys., 111, 124313, 10.1063/1.4730337