Molecular dynamics simulation of thermophysical properties of NaCl-KCl phase change materials applied to concentrating solar power

Journal of Energy Storage - Tập 52 - Trang 104707 - 2022
Yan Li1, Weichun Tie1, Wangwang Tan1, Qunzhi Zhu1
1College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China

Tài liệu tham khảo

Gielen, 2019, The role of renewable energy in the global energy transformation, Energy Strateg.Rev., 24, 38, 10.1016/j.esr.2019.01.006 Qazi, 2019, Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions, IEEE Access, 7, 63837, 10.1109/ACCESS.2019.2906402 Acosta-Silva, 2019, Applications of solar and wind renewable energy in agriculture: a review, Sci. Prog., 102, 127, 10.1177/0036850419832696 Kabir, 2018, Solar energy: potential and future prospects, Renew. Sustain. Energy Rev., 82, 894, 10.1016/j.rser.2017.09.094 Comello, 2018, The road ahead for solar PV power, Renew. Sustain. Energy Rev., 92, 744, 10.1016/j.rser.2018.04.098 Jelley, 2015, Concentrated solar power: recent developments and future challenges, Proc. Inst. Mech. Eng. A J. Power Energy, 229, 693, 10.1177/0957650914566895 Guerrero-Lemus, 2013, Concentrated solar power, 135 Islam, 2018, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends, Renew. Sustain. Energy Rev., 91, 987, 10.1016/j.rser.2018.04.097 Myers, 2016, Thermal energy storage using chloride salts and their eutectics, Appl. Therm. Eng., 109, 889, 10.1016/j.applthermaleng.2016.07.046 Neises, 2019, Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C, Sol. Energy, 181, 27, 10.1016/j.solener.2019.01.078 MS Mehos CS Turchi J Vidal M Wagner Z Ma CK Ho et alConcentrating Solar Power Gen3 Demonstration Roadmap. Conference Concentrating Solar Power Gen3 Demonstration Roadmap. Meybodi, 2017 Zhuang, 2019, LCOE analysis of tower concentrating solar power plants using different molten-salts for thermal energy storage in China, Energies, 12, 10.3390/en12071394 Li, 2021, Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage, Nano Energy, 89, 10.1016/j.nanoen.2021.106338 Wu, 2019, High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting, Adv. Mater., 31, 10.1002/adma.201905099 Wu, 2020, Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management, J. Mater. Chem. A, 8, 20011, 10.1039/D0TA05904H Jiang, 2018, Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (part I), Sol. Energy Mater. Sol. Cells, 178, 74, 10.1016/j.solmat.2017.12.034 Jiang, 2016, Eutectic Na2CO3–NaCl salt: a new phase change material for high temperature thermal storage, Sol. Energy Mater. Sol. Cells, 152, 155, 10.1016/j.solmat.2016.04.002 Li, 2018, Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES), Appl. Energy, 212, 516, 10.1016/j.apenergy.2017.12.069 Wang, 2020, Thermal transport and storage performances of NaCl–KCl–NaF eutectic salt for high temperatures latent heat, Sol. Energy Mater. Sol. Cells, 218 Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev., 14, 955, 10.1016/j.rser.2009.11.011 Alva, 2017, Thermal energy storage materials and systems for solar energy applications, Renew. Sustain. Energy Rev., 68, 693, 10.1016/j.rser.2016.10.021 Li, 2017, Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP, Sol. Energy, 152, 57, 10.1016/j.solener.2017.03.019 Wickramaratne, 2018, Macro-encapsulation and characterization of chloride based inorganic phase change materials for high temperature thermal energy storage systems, Appl. Energy, 221, 587, 10.1016/j.apenergy.2018.03.146 Zhang, 2021, Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage, Sol. Energy, 227, 468, 10.1016/j.solener.2021.09.020 Wang, 2020 Ding, 2019, Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts Burton, 2006, First-principles phase diagram calculations for the system NaCl–KCl: the role of excess vibrational entropy, Chem. Geol., 225, 222, 10.1016/j.chemgeo.2005.08.016 Janz, 1975, Molten salts: volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data, J. Phys. Chem. Ref. Data, 4, 871, 10.1063/1.555527 GJ Janz CB Allen J.R.J Downey R.P.T. Tomkins Physical properties data compilations relevant to energy storage. I. Molten salts: eutectic data. Conference Physical properties data compilations relevant to energy storage. I. Molten salts: eutectic data. GJ Janz CB Allen NP Bansal RM Murphy R.P.T. Tomkins Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. Conference Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. Sergeev, 2015, Thermodynamics of the NaCl–KCl system, Thermochim. Acta, 606, 25, 10.1016/j.tca.2015.03.003 Lantelme, 1974, Application of the molecular dynamics method to a liquid system with long range forces (Molten NaCl), Mol. Phys., 28, 1537, 10.1080/00268977400102791 Galamba, 2005, Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations, J. Chem. Phys., 122, 10.1063/1.1924706 Galamba, 2007, Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides, J. Chem. Phys., 126, 10.1063/1.2734965 Galamba, 2004, Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations, J. Chem. Phys., 120, 8676, 10.1063/1.1691735 Galamba, 2004, Molecular dynamics simulation of the shear viscosity of molten alkali halides, J. Phys. Chem. B, 108, 3658, 10.1021/jp036234x Ding, 2017, Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power, Nano Energy, 39, 380, 10.1016/j.nanoen.2017.07.020 Fumi, 1964, Ionic sizes and born repulsive parameters in the NaCl-type alkali halide“ I: the Huggins-Mayer and Pauling forms, J. Phys. Chem. Solids, 25, 31, 10.1016/0022-3697(64)90159-3 Tosi, 1964, Ionic sizes and born repulsive parameters in the NaCl-type alkali halide“ II: the generalized Huggins-Mayer for“, J. Phys. Chem. Solids, 25, 45, 10.1016/0022-3697(64)90160-X Boswarva, 1981, The generalised Huggins-Mayer form of born repulsive potentials for NaCl-type alkali halides, J. Phys. Chem. Solids, 42, 487, 10.1016/0022-3697(81)90029-9 D'Aguanno, 2018, Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures, Sci. Rep., 8, 10485, 10.1038/s41598-018-28641-1 Pelton, 1985, Liquidus measurements and coupled thermodynamic phase-diagram analysis of the NaCŒ KCl system, J. Chem. Soc. Faraday Trans., 81, 1167, 10.1039/f19858101167 Jin, 1999, To what extent a crystal can be superheated, Nanostruct. Mater., 12, 369, 10.1016/S0965-9773(99)00137-3 AL Sihm . Melting points of binary and ternary eutectic chloride salts : MD simulations on LiCl-NaCl-KCl and its binary constituents. Conference Melting points of binary and ternary eutectic chloride salts : MD simulations on LiCl-NaCl-KCl and its binary constituents. Luo, 2008 Zhou, 2019, Medium- and high-temperature latent heat thermal energy storage: material database, system review, and corrosivity assessment, Int. J. Energy Res., 43, 621, 10.1002/er.4216