Molecular dynamics simulation of thermophysical properties of NaCl-KCl phase change materials applied to concentrating solar power
Tài liệu tham khảo
Gielen, 2019, The role of renewable energy in the global energy transformation, Energy Strateg.Rev., 24, 38, 10.1016/j.esr.2019.01.006
Qazi, 2019, Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions, IEEE Access, 7, 63837, 10.1109/ACCESS.2019.2906402
Acosta-Silva, 2019, Applications of solar and wind renewable energy in agriculture: a review, Sci. Prog., 102, 127, 10.1177/0036850419832696
Kabir, 2018, Solar energy: potential and future prospects, Renew. Sustain. Energy Rev., 82, 894, 10.1016/j.rser.2017.09.094
Comello, 2018, The road ahead for solar PV power, Renew. Sustain. Energy Rev., 92, 744, 10.1016/j.rser.2018.04.098
Jelley, 2015, Concentrated solar power: recent developments and future challenges, Proc. Inst. Mech. Eng. A J. Power Energy, 229, 693, 10.1177/0957650914566895
Guerrero-Lemus, 2013, Concentrated solar power, 135
Islam, 2018, A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends, Renew. Sustain. Energy Rev., 91, 987, 10.1016/j.rser.2018.04.097
Myers, 2016, Thermal energy storage using chloride salts and their eutectics, Appl. Therm. Eng., 109, 889, 10.1016/j.applthermaleng.2016.07.046
Neises, 2019, Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C, Sol. Energy, 181, 27, 10.1016/j.solener.2019.01.078
MS Mehos CS Turchi J Vidal M Wagner Z Ma CK Ho et alConcentrating Solar Power Gen3 Demonstration Roadmap. Conference Concentrating Solar Power Gen3 Demonstration Roadmap.
Meybodi, 2017
Zhuang, 2019, LCOE analysis of tower concentrating solar power plants using different molten-salts for thermal energy storage in China, Energies, 12, 10.3390/en12071394
Li, 2021, Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage, Nano Energy, 89, 10.1016/j.nanoen.2021.106338
Wu, 2019, High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting, Adv. Mater., 31, 10.1002/adma.201905099
Wu, 2020, Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management, J. Mater. Chem. A, 8, 20011, 10.1039/D0TA05904H
Jiang, 2018, Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (part I), Sol. Energy Mater. Sol. Cells, 178, 74, 10.1016/j.solmat.2017.12.034
Jiang, 2016, Eutectic Na2CO3–NaCl salt: a new phase change material for high temperature thermal storage, Sol. Energy Mater. Sol. Cells, 152, 155, 10.1016/j.solmat.2016.04.002
Li, 2018, Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES), Appl. Energy, 212, 516, 10.1016/j.apenergy.2017.12.069
Wang, 2020, Thermal transport and storage performances of NaCl–KCl–NaF eutectic salt for high temperatures latent heat, Sol. Energy Mater. Sol. Cells, 218
Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev., 14, 955, 10.1016/j.rser.2009.11.011
Alva, 2017, Thermal energy storage materials and systems for solar energy applications, Renew. Sustain. Energy Rev., 68, 693, 10.1016/j.rser.2016.10.021
Li, 2017, Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP, Sol. Energy, 152, 57, 10.1016/j.solener.2017.03.019
Wickramaratne, 2018, Macro-encapsulation and characterization of chloride based inorganic phase change materials for high temperature thermal energy storage systems, Appl. Energy, 221, 587, 10.1016/j.apenergy.2018.03.146
Zhang, 2021, Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage, Sol. Energy, 227, 468, 10.1016/j.solener.2021.09.020
Wang, 2020
Ding, 2019, Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts
Burton, 2006, First-principles phase diagram calculations for the system NaCl–KCl: the role of excess vibrational entropy, Chem. Geol., 225, 222, 10.1016/j.chemgeo.2005.08.016
Janz, 1975, Molten salts: volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data, J. Phys. Chem. Ref. Data, 4, 871, 10.1063/1.555527
GJ Janz CB Allen J.R.J Downey R.P.T. Tomkins Physical properties data compilations relevant to energy storage. I. Molten salts: eutectic data. Conference Physical properties data compilations relevant to energy storage. I. Molten salts: eutectic data.
GJ Janz CB Allen NP Bansal RM Murphy R.P.T. Tomkins Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. Conference Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems.
Sergeev, 2015, Thermodynamics of the NaCl–KCl system, Thermochim. Acta, 606, 25, 10.1016/j.tca.2015.03.003
Lantelme, 1974, Application of the molecular dynamics method to a liquid system with long range forces (Molten NaCl), Mol. Phys., 28, 1537, 10.1080/00268977400102791
Galamba, 2005, Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations, J. Chem. Phys., 122, 10.1063/1.1924706
Galamba, 2007, Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides, J. Chem. Phys., 126, 10.1063/1.2734965
Galamba, 2004, Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations, J. Chem. Phys., 120, 8676, 10.1063/1.1691735
Galamba, 2004, Molecular dynamics simulation of the shear viscosity of molten alkali halides, J. Phys. Chem. B, 108, 3658, 10.1021/jp036234x
Ding, 2017, Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power, Nano Energy, 39, 380, 10.1016/j.nanoen.2017.07.020
Fumi, 1964, Ionic sizes and born repulsive parameters in the NaCl-type alkali halide“ I: the Huggins-Mayer and Pauling forms, J. Phys. Chem. Solids, 25, 31, 10.1016/0022-3697(64)90159-3
Tosi, 1964, Ionic sizes and born repulsive parameters in the NaCl-type alkali halide“ II: the generalized Huggins-Mayer for“, J. Phys. Chem. Solids, 25, 45, 10.1016/0022-3697(64)90160-X
Boswarva, 1981, The generalised Huggins-Mayer form of born repulsive potentials for NaCl-type alkali halides, J. Phys. Chem. Solids, 42, 487, 10.1016/0022-3697(81)90029-9
D'Aguanno, 2018, Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures, Sci. Rep., 8, 10485, 10.1038/s41598-018-28641-1
Pelton, 1985, Liquidus measurements and coupled thermodynamic phase-diagram analysis of the NaCŒ KCl system, J. Chem. Soc. Faraday Trans., 81, 1167, 10.1039/f19858101167
Jin, 1999, To what extent a crystal can be superheated, Nanostruct. Mater., 12, 369, 10.1016/S0965-9773(99)00137-3
AL Sihm . Melting points of binary and ternary eutectic chloride salts : MD simulations on LiCl-NaCl-KCl and its binary constituents. Conference Melting points of binary and ternary eutectic chloride salts : MD simulations on LiCl-NaCl-KCl and its binary constituents.
Luo, 2008
Zhou, 2019, Medium- and high-temperature latent heat thermal energy storage: material database, system review, and corrosivity assessment, Int. J. Energy Res., 43, 621, 10.1002/er.4216
