Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study

Teng Yong Ng1, Jingjie Yeo1, Zishun Liu2
1School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
2ICAM, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aufray, B., Kara, A., Vizzini, S., Oughaddou, H., Ĺandri, C., Ealet, B., Le Lay, G.: Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010)

Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)

Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

Cai, W.W., Moore, A.L., Zhu, Y.W., Li, X.S., Chen, S.S., Shi, L., Ruoff, R.S.: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10(5), 1645–1651 (2010)

Che, J.W., Çagin, T., Goddard III, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 11(2), 65 (2000)

Dove, M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (1993)

Evans, W.J., Hu, L., Keblinski, P.: Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96(20), 203112 (2010)

Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858–861 (2007)

Geim, A.K., Kim, P.: Carbon wonderland. Sci. Am. 298(4), 68–75 (2008)

Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008)

Guo, Z.X., Zhang, D., Gong, X.G.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95(16), 163103 (2009)

Guzmán-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76(7), 075131 (2007)

Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S.: Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)

Hu, J.N., Ruan, X.L., Chen, Y.P.: Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9(7), 2730–2735 (2009a)

Hu, J.N., Ruan, X.L., Jiang, Z.G., Chen, Y.P.: Molecular dynamics calculation of thermal conductivity of graphene nanoribbons. AIP Conf. Proc. 1173, 135–138 (2009b)

Kara, A., Enriquez, H., Seitsonen, A.P., Lew Yan Voon, L.C., Vizzini, S., Aufray, B., Oughaddou, H.: A review on silicene: new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012)

Kara, A., Léandri, C., Dávila, M.E., De Padova, P., Ealet, B., Oughaddou, H., Aufray, B., Le Lay, G.: Physics of silicene stripes. J. Supercond. Novel Magn. 22(3), 259–263 (2009)

Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., Aufray, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6), 064120 (2007)

Ng, T.Y., Yeo, J.J., Liu, Z.S.: A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects. Carbon 50(13), 4887–4893 (2012)

Nika, D.L., Balandin, A.A.: Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24(23), 233203 (2012)

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)

Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)

Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8), 5566–5568 (1989)

Tersoff, J.: Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 41(5), 3248 (1990)

Vadym, A., Vladimir, Z.: Phonons in graphene with point defects. J. Phys. Condens. Matter 23(1), 015402 (2011)

Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., Le Lay, G.: Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012)

Wei, N., Xu, L.Q., Wang, H.Q., Zheng, J.C.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22(10), 105705 (2011)

Xu, Z.P., Buehler, M.J.: Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20(18), 185701 (2009)

Yeo, J.J., Liu, Z.S., Ng, T.Y.: Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology 23(38), 385702 (2012)

Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

Zhong, W.R., Zhang, M.P., Ai, B.Q., Zheng, D.Q.: Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl. Phys. Lett. 98(11), 113107 (2011)